Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Most galaxies, including the Milky Way, harbor a central supermassive black hole (SMBH) weighing millions to billions of solar masses. Surrounding these SMBHs are dense regions of stars and stellar remnants, such as neutron stars (NSs) and black holes (BHs). NSs and possibly BHs receive large natal kicks at birth on the order of hundreds of kilometers per second. The natal kicks that occur in the vicinity of an SMBH may redistribute the orbital configuration of the compact objects and alter their underlying density distribution. We model the effects of natal kicks on a Galactic center (GC) population of massive stars and stellar binaries with different initial density distributions. Using observational constraints from stellar orbits near the GC, we place an upper limit on the steepness of the initial stellar profile and find it to be core-like. In addition, we predict that 30%–70% of compact objects become unbound from the SMBH due to their kicks and will migrate throughout the Galaxy. Different BH kick prescriptions lead to distinct spatial and kinematic distributions. We suggest that the Nancy Grace Roman Space Telescope may be able to distinguish between these distributions and thus be able to differentiate between natal kick mechanisms.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Stellar-mass black hole binaries (BHBs) in galactic nuclei are gravitationally perturbed by the central supermassive black hole (SMBH) of the host galaxy, potentially inducing strong eccentricity oscillations through the eccentric Kozai–Lidov mechanism. These highly eccentric binaries emit a train of gravitational-wave (GW) bursts detectable by the Laser Interferometer Space Antenna (LISA)—a planned space-based GW detector—with signal-to-noise ratios up to ∼100 per burst. In this work, we study the GW signature of BHBs orbiting our galaxy’s SMBH, Sgr A*, which are consequently driven to very high eccentricities. We demonstrate that an unmodeled approach using a wavelet decomposition of the data effectively yields the time-frequency properties of each burst, provided that the GW frequency peaks between 10−3and 10−1Hz. The wavelet parameters may be used to infer the eccentricity of the binary, measuring within an error of 20%. Our proposed search method can thus constrain the parameter space to be sampled by complementary Bayesian inference methods, which use waveform templates or orthogonal wavelets to reconstruct and subtract the signal from LISA data.more » « less
-
Abstract The dynamical formation channels of gravitational wave (GW) sources typically involve a stage when the compact object binary source interacts with the environment, which may excite its eccentricity, yielding efficient GW emission. For the wide eccentric compact object binaries, the GW emission happens mostly near the pericenter passage, creating a unique, burst-like signature in the waveform. This work examines the possibility of stellar-mass bursting sources in the mHz band for future LISA detections. Because of their long lifetime (∼107yr) and promising detectability, the number of mHz bursting sources can be large in the local Universe. For example, based on our estimates, there will be ∼3–45 bursting binary black holes in the Milky Way, with ∼102–104bursts detected during the LISA mission. Moreover, we find that the number of bursting sources strongly depends on their formation history. If certain regions undergo active formation of compact object binaries in the recent few million years, there will be a significantly higher bursting source fraction. Thus, the detection of mHz GW bursts not only serves as a clue for distinguishing different formation channels, but also helps us understand the star formation history in different regions of the Milky Way.more » « less
-
ABSTRACT The globular cluster ultraluminous X-ray source, RZ 2109, is a complex and unique system that has been detected at X-ray, ultraviolet, and optical wavelengths. Based on almost 20 yr of Chandra and XMM–Newton observations, the X-ray luminosity exhibits order of magnitude variability, with the peak flux lasting on the order of a few hours. We perform robust time series analysis on the archival X-ray observations and find that this variability is periodic on a time-scale of 1.3 ± 0.04 d. The source also demonstrates broad [O iii] λ5007 emission, which has been observed since 2004, suggesting a white dwarf donor and therefore an ultra-compact X-ray binary. We present new spectra from 2020 and 2022, marking 18 yr of observed [O iii] emission from this source. Meanwhile, we find that the globular cluster counterpart is unusually bright in the NUV/UVW2 band. Finally, we discuss RZ 2109 in the context of the eccentric Kozai–Lidov mechanism and show that the observed 1.3 d periodicity can be used to place constraints on the tertiary configuration, ranging from 20 min (for a 0.1 M⊙ companion) to approximately 95 min (for a 1 M⊙ companion), if the eccentric Kozai–Lidov mechanism is at the origin of the periodic variability.more » « less
-
Abstract Dynamical perturbations from supermassive black hole (SMBH) binaries can increase the rates of tidal disruption events (TDEs). However, most previous work focuses on TDEs from the heavier black hole in the SMBH binary (SMBHB) system. In this work, we focus on the lighter black holes in SMBHB systems and show that they can experience a similarly dramatic increase in their TDE rate due to perturbations from a more massive companion. While the increase in TDEs around the more massive black hole is mostly due to chaotic orbital perturbations, we find that, around the smaller black hole, the eccentric Kozai–Lidov mechanism is dominant and capable of producing a comparably large number of TDEs. In this scenario, the mass derived from the light curve and spectra of TDEs caused by the lighter SMBH companion is expected to be significantly smaller than the SMBH mass estimated from galaxy scaling relations, which are dominated by the more massive companion. This apparent inconsistency can help find SMBHB candidates that are not currently accreting as active galactic nuclei and that are at separations too small for them to be resolved as two distinct sources. In the most extreme cases, these TDEs provide us with the exciting opportunity to study SMBHBs in galaxies where the primary SMBH is too massive to disrupt Sun-like stars.more » « less
-
Abstract Extreme mass-ratio inspirals (EMRIs) take place when a stellar-mass black hole (BH) merges with a supermassive BH (SMBH). The gravitational-wave emission from such an event is expected to be detectable by the future Laser Interferometer Space Antenna (LISA) and other millihertz detectors. It was recently suggested that the EMRI rate in SMBH binary systems is orders of magnitude higher than the EMRI rate around a single SMBH with the same total mass. Here we show that this high rate can produce thousands of SMBH–BH sources at a redshift of unity. We predict that LISA may detect a few hundred of these EMRIs with signal-to-noise ratio above S/N ≥8 within a 4 yr mission lifetime. The remaining subthreshold sources will contribute to a large confusion noise, which is approximately an order of magnitude above LISA’s sensitivity level. Finally, we suggest that the individually detectable systems, as well as the background noise from the subthreshold EMRIs, can be used to constrain the SMBH binary fraction in the low-redshift Universe.more » « less
-
Abstract Tidal disruption events (TDEs) take place when a star ventures too close to a supermassive black hole (SMBH) and becomes ruptured. One of the leading proposed physical mechanisms often invoked in the literature involves weak two-body interactions experienced by the population of stars within the host SMBH’s sphere of influence, commonly referred to as two-body relaxation. This process can alter the angular momentum of stars at large distances and place them into nearly radial orbits, thus driving them to disruption. On the other hand, gravitational perturbations from an SMBH companion via the eccentric Kozai–Lidov (EKL) mechanism have also been proposed as a promising stellar disruption channel. Here we demonstrate that the combination of EKL and two-body relaxation in SMBH binaries is imperative for building a comprehensive picture of the rates of TDEs. Here we explore how the density profile of the surrounding stellar distribution and the binary orbital parameters of an SMBH companion influence the rate of TDEs. We show that this combined channel naturally produces disruptions at a rate that is consistent with observations and also naturally forms repeated TDEs, where a bound star is partially disrupted over multiple orbits. Recent observations show stars being disrupted in short-period orbits, which is challenging to explain when these mechanisms are considered independently. However, the diffusive effect of two-body relaxation, combined with the secular nature of the eccentricity excitations from EKL, is found to drive stars on short eccentric orbits at a much higher rate. Finally, we predict that rTDEs are more likely to take place in the presence of a steep stellar density distribution.more » « less
-
Abstract We present the first estimate of the intrinsic binary fraction of young stars across the central ≈0.4 pc surrounding the supermassive black hole (SMBH) at the Milky Way Galactic center (GC). This experiment searched for photometric variability in 102 spectroscopically confirmed young stars, using 119 nights of 10″ wide adaptive optics imaging observations taken at W. M. Keck Observatory over 16 yr in the -[2.1μm] andH-[1.6μm] bands. We photometrically detected three binary stars, all of which are situated more than 1″ (0.04 pc) from the SMBH and one of which, S2-36, is newly reported here with spectroscopic confirmation. All are contact binaries or have photometric variability originating from stellar irradiation. To convert the observed binary fraction into an estimate of the underlying binary fraction, we determined the experimental sensitivity through detailed light-curve simulations, incorporating photometric effects of eclipses, irradiation, and tidal distortion in binaries. The simulations assumed a population of young binaries, with stellar ages (4 Myr) and masses matched to the most probable values measured for the GC young star population, and underlying binary system parameters (periods, mass ratios, and eccentricities) similar to those of local massive stars. As might be expected, our experimental sensitivity decreases for eclipses narrower in phase. The detections and simulations imply that the young, massive stars in the GC have a stellar binary fraction ≥71% (68% confidence), or ≥42% (95% confidence). This inferred GC young star binary fraction is consistent with that typically seen in young stellar populations in the solar neighborhood. Furthermore, our measured binary fraction is significantly higher than that recently reported by Chu et al. based on radial velocity measurements for stars ≲1″ of the SMBH. Constrained with these two studies, the probability that the same underlying young star binary fraction extends across the entire region is <1.4%. This tension provides support for a radial dependence of the binary star fraction, and therefore, for the dynamical predictions of binary merger and evaporation events close to the SMBH.more » « less
-
Abstract The Gaia mission has detected many white dwarfs (WDs) in binary and triple configurations, and while observations suggest that triple-stellar systems are common in our Galaxy, not much attention was devoted to WDs in triples. For stability reasons, these triples must have hierarchical configurations, i.e., two stars are on a tight orbit (the inner binary), with the third companion on a wider orbit about the inner binary. In such a system, the two orbits torque each other via the eccentric Kozai–Lidov mechanism, which can alter the orbital configuration of the inner binary. We simulate thousands of triple-stellar systems for over 10 Gyr, tracking gravitational interactions, tides, general relativity, and stellar evolution up to their WD fate. As demonstrated here, three-body dynamics coupled with stellar evolution is a critical channel to form tight WD binaries or merge a WD binary. Among these triples, we explore their manifestations as cataclysmic variables, Type Ia supernovae, and gravitational-wave events. The simulated systems are then compared to a sample of WD triples selected from the Gaia catalog. We find that including the effect of mass-loss-induced kicks is crucial for producing a distribution of the inner binary–tertiary separations that is consistent with Gaia observations. Lastly, we leverage this consistency to estimate that, at minimum, 30% of solar-type stars in the local 200 pc were born in triples.more » « less
-
Stellar Collisions in the Galactic Center: Massive Stars, Collision Remnants, and Missing Red GiantsAbstract Like most galaxies, the Milky Way harbors a supermassive black hole (SMBH) at its center, surrounded by a nuclear star cluster. In this dense star cluster, direct collisions can occur between stars before they evolve off the main sequence. Using a statistical approach, we characterize the outcomes of these stellar collisions within the inner parsec of the Galactic center (GC). Close to the SMBH, where the velocity dispersion is larger than the escape speed from a Sun-like star, collisions lead to mass loss. We find that the stellar population within 0.01 pc is halved within about a billion years because of destructive collisions. Additionally, we predict a diffuse population of peculiar low-mass stars in the GC. These stars have been divested of their outer layers in the inner 0.01 pc before migrating to larger distances from the SMBH. Between 0.01 and 0.1 pc from the SMBH, collisions can result in mergers. Our results suggest that repeated collisions between lower-mass stars can produce massive (≳10M⊙) stars, and that there may be ∼100 of them residing in this region. We provide predictions on the number of so-called G objects, dust- and gas-enshrouded stellar objects, that may result from main-sequence stellar collisions. Lastly, we comment on uncertainties in our model and possible connections between stellar collisions and the missing red giants in the GC.more » « less