skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2026

Title: The ALMA Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO). VII. Testing Accretion Mechanisms from Disk Population Synthesis
Abstract The architecture of planetary systems depends on the evolution of the disks in which they form. In this work, we develop a population synthesis approach to interpret the Atacama Large Millimeter/submillimeter Array survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) measurements of disk gas mass and size considering two scenarios: turbulence-driven evolution with photoevaporative winds and MHD wind-driven evolution. A systematic method is proposed to constrain the distribution of disk parameters from the disk fractions, accretion rates, disk gas masses, and CO gas sizes. We find that turbulence-driven accretion with initially compact disks (R0 ≃ 5–20 au), low mass-loss rates, and relatively long viscous timescales (tν,0 ≃ 0.4–3 Myr orαSS ≃ 2–4 × 10−4) can reproduce the disk fractions and gas sizes. However, the distribution of apparent disk lifetimes defined as the M D / M ̇ * ratio is severely overestimated by turbulence-driven models. On the other hand, MHD wind-driven accretion can reproduce the bulk properties of disk populations from Ophiuchus to Upper Scorpius assuming compact disks with an initial magnetization of aboutβ ≃ 105DW ≃ 0.5–1 × 10−3) and a magnetic field that declines with time. More studies are needed to confirm the low masses found by AGE-PRO, notably for compact disks that question turbulence-driven accretion. The constrained synthetic disk populations can now be used for realistic planet population models to interpret the properties of planetary systems on a statistical basis.  more » « less
Award ID(s):
2205617
PAR ID:
10646929
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
989
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accretion signatures from bound brown dwarf and protoplanetary companions provide evidence for ongoing planet formation, and accreting substellar objects have enabled new avenues to study the astrophysical mechanisms controlling the formation and accretion processes. Delorme 1 (AB)b, a ∼30–45 Myr circumbinary planetary-mass companion, was recently discovered to exhibit strong Hαemission. This suggests ongoing accretion from a circumplanetary disk, somewhat surprising given canonical gas disk dispersal timescales of 5–10 Myr. Here, we present the first NIR detection of accretion from the companion in Paβ, Paγ, and Brγemission lines from SOAR/TripleSpec 4.1, confirming and further informing its accreting nature. The companion shows strong line emission, withLline≈ 1–6 × 10−8Lacross lines and epochs, while the binary host system shows no NIR hydrogen line emission (Lline< 0.32–11 × 10−7L). Observed NIR hydrogen line ratios are more consistent with a planetary accretion shock than with local line excitation models commonly used to interpret stellar magnetospheric accretion. Using planetary accretion shock models, we derive mass accretion rate estimates of M ̇ pla 3 –4 × 10−8MJyr−1, somewhat higher than expected under the standard star formation paradigm. Delorme 1 (AB)b’s high accretion rate is perhaps more consistent with formation via disk fragmentation. Delorme 1 (AB)b is the first protoplanet candidate with clear (signal-to-noise ratio ∼5) NIR hydrogen line emission. 
    more » « less
  2. Abstract It remains unclear what mechanism is driving the evolution of protoplanetary disks. Direct detection of the main candidates, either turbulence driven by magnetorotational instabilities or magnetohydrodynamical disk winds, has proven difficult, leaving the time evolution of the disk size as one of the most promising observables able to differentiate between these two mechanisms. But to do so successfully, we need to understand what the observed gas disk size actually traces. We studied the relation betweenRCO,90%, the radius that encloses 90% of the12CO flux, andRc, the radius that encodes the physical disk size, in order to provide simple prescriptions for conversions between these two sizes. For an extensive grid of thermochemical models, we calculateRCO,90%from synthetic observations and relate properties measured at this radius, such as the gas column density, to bulk disk properties, such asRcand the disk massMdisk. We found an empirical correlation between the gas column density atRCO,90%and disk mass: N gas ( R CO , 90 % ) 3.73 × 10 21 ( M disk / M ) 0.34 cm 2 . Using this correlation we derive an analytical prescription ofRCO,90%that only depends onRcandMdisk. We deriveRcfor disks in Lupus, Upper Sco, Taurus, and the DSHARP sample, finding that disks in the older Upper Sco region are significantly smaller (〈Rc〉 = 4.8 au) than disks in the younger Lupus and Taurus regions (〈Rc〉 = 19.8 and 20.9 au, respectively). This temporal decrease inRcgoes against predictions of both viscous and wind-driven evolution, but could be a sign of significant external photoevaporation truncating disks in Upper Sco. 
    more » « less
  3. Abstract State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rate m ̇ c to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb, m ̇ c reaches its maximum, m ̇ c , max 0.02 ( α / 0.3 ) 3 . If atr≫rbthe thin disk accretes with m ̇ d < m ̇ c , max , then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii. 
    more » « less
  4. Recent radiation-thermochemical-magnetohydrodynamic simulations resolved formation of quasar accretion disks from cosmological scales down to ~300 gravitational radii R g , arguing they were ‘hyper-magnetized’ (plasma β 1 supported by toroidal magnetic fields) and distinct from traditional α -disks. We extend these, refining to 3 R g around a BH with multi-channel radiation and thermochemistry, and exploring a factor of 1000 range of accretion rates ( m ̇ 0.01 20 ). At smaller scales, we see the disks maintain steady accretion, thermalize and self-ionize, and radiation pressure grows in importance, but large deviations from local thermodynamic equilibrium and single-phase equations of state are always present. Trans-Alfvenic and highly-supersonic turbulence persists in all cases, and leads to efficient vertical mixing, so radiation pressure saturates at levels comparable to fluctuating magnetic and turbulent pressures even for m ̇ 1 . The disks also become radiatively inefficient in the inner regions at high m ̇ . The midplane magnetic field remains primarily toroidal at large radii, but at super-Eddington m ̇ we see occasional transitions to a poloidal-field dominated state associated with outflows and flares. Large-scale magnetocentrifugal and continuum radiation-pressure-driven outflows are weak at m ̇ < 1 , but can be strong at m ̇ 1 . In all cases there is a scattering photosphere above the disk extending to 1000 R g at large m ̇ , and the disk is thick and flared owing to magnetic support (with H / R nearly independent of m ̇ ), so the outer disk is strongly illuminated by the inner disk and most of the inner disk continuum scatters or is reprocessed at larger scales, giving apparent emission region sizes as large as . 
    more » « less
  5. Abstract Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,RB= 103Rg. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested disk (MAD), and launches relativistic jets that propagate well outsideRBand suppress BH accretion to 1.5% of the Bondi rate, M ̇ B . Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% of M ̇ B reach the BH. Thereafter, the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak intermittent jets that spread their energy over a large area and suppress BH accretion to ≲2% M ̇ B . Because the BAD and RAD states tangle up the jets and destroy them well insideRB, they are promising candidates for the more abundant, but less luminous, class of FR0 galaxies. 
    more » « less