skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: New Frontiers in 3D Printing Using Biocompatible Polymers
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state of 3D-printable biocompatible polymers and their composites, with an emphasis on their processing methods, properties, and biomedical uses. The scope of this work includes both natural and synthetic biocompatible polymers, polymer–nanocomposite systems, and bioinks that do not require photo initiators. The relevant literature was critically examined to classify materials by type, evaluate their compatibility with major 3D printing techniques such as stereolithography, selective laser sintering, and fused deposition modeling, and assess their performance in various medical applications. Key findings highlight that reinforced polymer composites, tailored surface chemistries, and hybrid printing strategies significantly expand the range of functional, customizable, and affordable biomedical devices. This review concludes by discussing present-day applications and emerging trends, underscoring that 3D-printable biocompatible polymers are rapidly transitioning from research to clinical practice, offering transformative potential for patient-specific healthcare solutions.  more » « less
Award ID(s):
2037097
PAR ID:
10646972
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
26
Issue:
16
ISSN:
1422-0067
Page Range / eLocation ID:
8016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity. 
    more » « less
  2. Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth. 
    more » « less
  3. Abstract Functionally gradient materials emulate nature's ability to seamlessly blend properties through variations in material composition, unlocking advanced engineering applications such as biomedical devices and high‐performance composites. Additive manufacturing, particularly stereolithography, enables sophisticated 3D geometries with diverse materials. However, current stereolithography‐based multi‐material 3D printing is constrained by time‐intensive material switching and compromised interfacial properties. To overcome these challenges, we present dynamic fluid‐assisted micro continuous liquid interface production (DF‐µCLIP), a high‐speed multi‐material 3D printing platform that integrates varying compositions in a fully continuous fashion. By utilizing the polymerization‐free “dead zone”, vliquid resins are seamlessly replenished within a resin bath equipped with dynamic fluidic channels and a synchronized material supply system. DF‐µCLIP achieves ultra‐fast printing speeds of 90 mm/hour with 7.4 µ m pixel‐1 resolution while enabling on‐the‐fly material transitions. This strategy enhances mechanical strength at multi‐material interface through entangled polymer networks and promotes seamless material transitions between distinct materials ilike fragile hydrogels and rigid polymers, addressing interfacial failure caused by mismatch of swelling behavior. Additionally, dynamic material replenishment with real‐time composition control enables continuous gradient printing instead of the conventional step‐wise controlled gradient. Demonstrations include polymers with gradient color transitions and gradient carbon nanotube (CNT) composites with seamlessly varying conductivity. 
    more » « less
  4. Soft robots, constructed from deformable materials, offer significant advantages over rigid robots by mimicking biological tissues and providing enhanced adaptability, safety, and functionality across various applications. Central to these robots are electroactive polymer (EAP) actuators, which allow large deformations in response to external stimuli. This review examines various EAP actuators, including dielectric elastomers, liquid crystal elastomers (LCEs), and ionic polymers, focusing on their potential as artificial muscles. EAPs, particularly ionic and electronic varieties, are noted for their high actuation strain, flexibility, lightweight nature, and energy efficiency, making them ideal for applications in mechatronics, robotics, and biomedical engineering. This review also highlights piezoelectric polymers like polyvinylidene fluoride (PVDF), known for their flexibility, biocompatibility, and ease of fabrication, contributing to tactile and pressure sensing in robotic systems. Additionally, conducting polymers, with their fast actuation speeds and high strain capabilities, are explored, alongside magnetic polymer composites (MPCs) with applications in biomedicine and electronics. The integration of machine learning (ML) and the Internet of Things (IoT) is transforming soft robotics, enhancing actuation, control, and design. Finally, the paper discusses future directions in soft robotics, focusing on self-healing composites, bio-inspired designs, sustainability, and the continued integration of IoT and ML for intelligent, adaptive, and responsive robotic systems. 
    more » « less
  5. Abstract Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications. 
    more » « less