skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Constitutive Differences in Immune Gene Expression Are Correlated With Wood Frog Populations From Contrasting Winter Environments
ABSTRACT Many terrestrial ectotherms have gone to great evolutionary lengths to adapt to long cold winters; some have even evolved the ability to tolerate the freezing of most of the extracellular fluid in the body. Now, however, high‐elevation and high‐latitude winters are experiencing an accelerated period of warming. Specialised winter adaptations that promoted fitness in a seasonally frozen environment may soon be superfluous or even maladaptive. We ask whether winter adaptations include changes in immune functions, and whether changing winter conditions could exert disparate effects on populations of a wide‐ranging terrestrial ectotherm, the wood frog (Lithobates sylvaticus). By rearing wood frogs from ancestral winter environments that vary in length and temperature in a common garden, and reciprocally exposing post‐metamorphic frogs to unfrozen and frozen artificial winter conditions in the lab, we were able to decompose transcriptomic differences in ventral skin gene expression into those that were environmentally induced (responsive to temperature) and genetically determined and those that varied as an interaction between the genotype and environment. We found that frogs from harsh ancestral winter environments constitutively upregulated immune processes, including cellular immunity, inflammatory processes and adaptive immune processes, as compared to frogs from mild ancestral winter environments. Further, we saw that the expression of several genes varied in an interaction between the genotype and artificial winter. We suggest that just as winter climates likely served as the selective force resulting in remarkable winter adaptations such as freeze tolerance, they may have also induced constitutive changes in immune gene expression.  more » « less
Award ID(s):
2133740 2243076 2207980 1904520
PAR ID:
10646993
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Molecular Ecology
Date Published:
Journal Name:
Molecular Ecology
Volume:
34
Issue:
12
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co‐expression network and rice phenotypic data under stress has penitential to identify stress‐responsive genes, but there is no standard method to associate stress phenotype with gene co‐expression network. A novel method for integration of gene co‐expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied aLASSO‐based method to the gene co‐expression network of rice with salt stress to discover key genes and their interactions for salt tolerance‐related phenotypes. Submodules in gene modules identified from the co‐expression network were selected by theLASSOregression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co‐expression network and phenotypic data. 
    more » « less
  2. ABSTRACT Herbivorous insects tolerate chemical and metabolic variation in their host plant diet by modulating physiological traits. Insect immune response is one such trait that plays a crucial role in maintaining fitness but can be heavily influenced by variation in host plant quality. An important question is how the use of different host plants affects the ability of herbivorous insects to resist viral pathogens. Furthermore, the transcriptional changes associated with this interaction of diet and viral pathogens remain understudied. The Melissa blue butterfly (Lycaeides melissa) has colonised the exotic legumeMedicago sativaas a larval host within the past 200 years. We used this system to study the interplay between the effects of host plant variation and viral infection on physiological responses and global gene expression. We measured immune strength in response to infection by the Junonia coenia densovirus (JcDV) in two ways: (1) direct measurement of phenoloxidase activity and melanisation, and (2) transcriptional sequencing of individuals exposed to different viral and host plant treatments. Our results demonstrate that viral infection caused total phenoloxidase (total PO) to increase and viral infection and host plant interactively affected total PO such that for infected larvae, total PO was significantly higher for larvae consuming the native host plant. Additionally,L. melissalarvae differentially expressed several hundred genes in response to host plant treatment, but with minimal changes in gene expression in response to viral infection. Not only immune genes, but several detoxification, transporter, and oxidase genes were differentially expressed in response to host plant treatments. These results demonstrate that in herbivorous insects, consumption of a novel host plant can alter both physiological and transcriptional responses relevant to viral infection, emphasising the importance of considering immune and detoxification mechanisms into models of evolution of host range in herbivorous insects. 
    more » « less
  3. Abstract Light intensity varies 1 million‐fold between night and day, driving the evolution of eye morphology and retinal physiology. Despite extensive research across taxa showing anatomical adaptations to light niches, surprisingly few empirical studies have quantified the relationship between such traits and the physiological sensitivity to light. In this study, we employ a comparative approach in frogs to determine the physiological sensitivity of eyes in two nocturnal (Rana pipiens,Hyla cinerea) and two diurnal species (Oophaga pumilio,Mantella viridis), examining whether differences in retinal thresholds can be explained by ocular and cellular anatomy. Scotopic electroretinogram (ERG) analysis of relative b‐wave amplitude reveals 10‐ to 100‐fold greater light sensitivity in nocturnal compared to diurnal frogs. Ocular and cellular optics (aperture, focal length, and rod outer segment dimensions) were assessed via the Land equation to quantify differences in optical sensitivity. Variance in retinal thresholds was overwhelmingly explained by Land equation solutions, which describe the optical sensitivity of single rods. Thus, at the b‐wave, stimulus‐response thresholds may be unaffected by photoreceptor convergence (which create larger, combined collecting areas). Follow‐up experiments were conducted using photopic ERGs, which reflect cone vision. Under these conditions, the relative difference in thresholds was reversed, such that diurnal species were more sensitive than nocturnal species. Thus, photopic data suggest that rod‐specific adaptations, not ocular anatomy (e.g., aperture and focal distance), drive scotopic thresholds differences. To the best of our knowledge, these data provide the first quantified relationship between optical and physiological sensitivity in vertebrates active in different light regimes. 
    more » « less
  4. Abstract Frozen winters define life at high latitudes and altitudes. However, recent, rapid changes in winter conditions have highlighted our relatively poor understanding of ecosystem function in winter relative to other seasons. Winter ecological processes can affect reproduction, growth, survival, and fitness, whereas processes that occur during other seasons, such as summer production, mediate how organisms fare in winter. As interest grows in winter ecology, there is a need to clearly provide a thought-provoking framework for defining winter and the pathways through which it affects organisms. In the present article, we present nine maxims (concise expressions of a fundamentally held principle or truth) for winter ecology, drawing from the perspectives of scientists with diverse expertise. We describe winter as being frozen, cold, dark, snowy, less productive, variable, and deadly. Therefore, the implications of winter impacts on wildlife are striking for resource managers and conservation practitioners. Our final, overarching maxim, “winter is changing,” is a call to action to address the need for immediate study of the ecological implications of rapidly changing winters. 
    more » « less
  5. ABSTRACT RNA viruses are infamous for their ability to cross species barriers, posing threats to global health and security. Influenza A virus (IAV) is naturally found in avian hosts but periodically spills over into marine wildlife. IAV outbreaks occur in the Northwest Atlantic, but grey seals (Halichoerus grypus) appear to be less susceptible to IAV compared to other species. The subclinical nature of IAV infection in addition to life history factors suggest grey seals are a potential wild reservoir host for IAV. We investigated differential gene expression among grey seals naturally exposed to IAV to elucidate genetic mechanisms involved in grey seal disease resistance. RNA sequencing was conducted on blood samples (N = 31) collected from grey seal pups in Massachusetts, US between 2014 and 2019. Samples were grouped for analysis based on presence/absence of viral RNA and antibodies. In the presence of IAV RNA, we observed widespread down‐regulation of genes, including immune genes, potentially as a result of IAV‐induced host shutoff. Immune down‐regulation occurred in acute stage of IAV infection (+ viral RNA, − antibodies), followed by up‐regulation of protein production in peak stage (+ viral RNA, + antibodies), possibly as a result of increased viral replication. Evidence of an activated immune response was observed in late stage of infection (− viral RNA, + antibodies) with up‐regulated adaptive immunity genes. We hypothesize that the combination of down‐ and up‐regulated immune gene expression may prevent overstimulation of the immune response, acting as an adaptation in grey seals to resist IAV‐associated mortality. 
    more » « less