skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2133740

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Dispersal can affect individual‐level fitness and population‐level ecological and evolutionary processes. Factors that affect dispersal could therefore have important eco‐evolutionary implications. Here, we investigated the extent to which an inflammation and tissue repair response—peritoneal fibrosis—which is known to restrict movement, could influence dispersal by conducting a mark‐recapture experiment in a lake in Alaska with threespine stickleback (Gasterosteus aculatus). A subset of captured stickleback were injected with aluminium phosphate to experimentally induce fibrosis (‘treatment group’), and another subset were injected with saline or received no injection—both of which do not induce fibrosis (‘control group’). We released all fish at one introduction point and re‐sampled stickleback throughout the lake for 8 days. We recaptured 123 individuals (n = 47 fibrosis treatment;n = 76 control) and dissected them to determine fibrosis levels. Overall, fibrosis did not affect dispersal. Some compelling (but not statistically significant) trends suggest that early‐stage inflammation may affect dispersal, providing opportunities for future work. By showing that effects on dispersal are not important side effects of fibrosis, these findings improve our understanding of the ecological implications of immune responses. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Eco‐evolutionary experiments are typically conducted in semi‐unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology—where different “types” of a given species can be introduced into different “replicate” locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific “types” of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used—and should they be mixed together? (Q3) Whichspecificsource populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco‐evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future. 
    more » « less