skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 7, 2026

Title: Fiber-Optic Sensing for Earthquake Hazards Research, Monitoring, and Early Warning
Abstract The use of fiber-optic sensing systems in seismology has exploded in the past decade. Despite an ever-growing library of ground-breaking studies, questions remain about the potential of fiber-optic sensing technologies as tools for advancing if not revolutionizing earthquake-hazards-related research, monitoring, and early warning systems. A working group convened to explore these topics; we comprehensively examined the application of fiber optics in various aspects of earthquake hazards, encompassing earthquake source processes, crustal imaging, data archiving, and technological challenges. There is great potential for fiber-optic systems to advance earthquake monitoring and understanding, but to fully unlock their capabilities requires continued progress in key areas of research and development, including instrument testing and validation, increased dynamic range for applications focused on larger earthquakes, and continued improvement in subsurface and source imaging methods. A key current stumbling block results from the lack of clear data archiving requirements, and we propose an initial strategy that balances data volume requirements with preserving key data for a broad range of future studies. In addition, we demonstrate the potential for fiber-optic sensing to impact monitoring efforts by documenting the data completeness in a number of long-term experiments. Finally, we outline the features of a instrument testing facility that would enable progress toward reliable and standardized distributed acoustic sensing data. Overcoming these current obstacles would facilitate progress in fiber-optic sensing and unlock its potential application to a broad range of earthquake hazard problems.  more » « less
Award ID(s):
2022716
PAR ID:
10647239
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
SSA
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Distributed acoustic sensing (DAS) is a new, relatively inexpensive technology that is rapidly demonstrating its promise for recording earthquake waves and other seismic signals in a wide range of research and public safety arenas. It should significantly augment present seismic networks. For several important applications, it should be superior. It employs ordinary fiber‐optic cables, but not as channels for data among separate sophisticated instruments. With DAS, the hair‐thin glass fibers themselves are the sensors. Internal natural flaws serve as seismic strainmeters, kinds of seismic detector. Unused or dark fibers are common in fiber cables widespread around the globe, or in dedicated cables designed for special application, are appropriate for DAS. They can sample passing seismic waves at locations every few meters or closer along paths stretching for tens of kilometers. DAS arrays should enrich the three major areas of local and regional seismology: earthquake monitoring, imaging of faults and many other geologic formations, and hazard assessment. Recent laboratory and field results from DAS tests underscore its broad bandwidth and high‐waveform fidelity. Thus, while still in its infancy, DAS already has shown itself as the working heart—or perhaps ear drums—of a valuable new seismic listening tool. My colleagues and I expect rapid growth of applications. We further expect it to spread into such frontiers as ocean‐bottom seismology, glacial and related cryoseismology, and seismology on other solar system bodies. 
    more » « less
  2. A fiber-optic cable below Turkiye’s earthquake-prone metropolis is offering new details about how seismic waves will rattle the city—and demonstrating the potential of a bigger monitoring effort. 
    more » « less
  3. Abstract Distributed Acoustic Sensing (DAS) is an emerging technology that converts optical fibers into dense arrays of strainmeters, significantly enhancing our understanding of earthquake physics and Earth's structure. While most past DAS studies have focused primarily on seismic wave phase information, accurate measurements of true ground motion amplitudes are crucial for comprehensive future analyses. However, amplitudes in DAS recordings, especially for pre‐existing telecommunication cables with uncertain fiber‐ground coupling, have not been fully quantified. By calibrating three DAS arrays with co‐located seismometers, we systematically evaluate DAS amplitudes. Our results indicate that the average DAS amplitude of earthquake signals closely matches that of co‐located seismometer data across frequencies from 0.01 to 10 Hz. The noise floor of DAS is comparable to that of strong‐motion stations but higher than that of broadband stations. The saturation amplitude of DAS is adjustable by modifying the pulse repetition rate and gauge length. We also demonstrate how our findings enhance the understanding of fiber‐optic seismology and its implications for natural hazard mitigation and Earth structure imaging and monitoring. Specifically, our results suggest that with proper settings, DAS can detectP‐waves from an M6+ earthquake occurring 10 km from the cable without saturation, indicating its viability for earthquake early warning. Through quantitative comparison and analysis, we also find that local ambient traffic noise levels strongly affect the quality of seismic interferometry measurement, which is a powerful tool for near‐surface imaging and monitoring. Our methodology and findings are valuable for future DAS experiments that require precise seismic amplitude measurements. 
    more » « less
  4. null (Ed.)
    Seafloor geophysical instrumentation is challenging to deploy and maintain but critical for studying submarine earthquakes and Earth’s interior. Emerging fiber-optic sensing technologies that can leverage submarine telecommunication cables present an opportunity to fill the data gap. We successfully sensed seismic and water waves over a 10,000-kilometer-long submarine cable connecting Los Angeles, California, and Valparaiso, Chile, by monitoring the polarization of regular optical telecommunication channels. We detected multiple moderate-to-large earthquakes along the cable in the 10-millihertz to 5-hertz band. We also recorded pressure signals from ocean swells in the primary microseism band, implying the potential for tsunami sensing. Our method, because it does not require specialized equipment, laser sources, or dedicated fibers, is highly scalable for converting global submarine cables into continuous real-time earthquake and tsunami observatories. 
    more » « less
  5. In recent years, security monitoring of public places and critical infrastructure has heavily relied on the widespread use of cameras, raising concerns about personal privacy violations. To balance the need for effective security monitoring with the protection of personal privacy, we explore the potential of optical fiber sensors for this application. This article proposes FiberFlex, an intelligent and distributed fiber sensor system. Ultizing Field Programmable Gate Arrays (FPGA) high-level synthesis (HLS) acceleration, FiberFlex offers real-time pedestrian detection by co-designing the entire pipeline of optical signal acquisition, processing, and recognition networks based on the principles of optical fiber sensing. As a promising alternative to traditional camera-based monitoring systems, FiberFlex achieves pedestrian detection by analyzing the vibration patterns caused by pedestrian footsteps, enabling security monitoring while preserving individual privacy. FiberFlex comprises three modules:First, fiber-optic sensing system: A fiber-optic distributed acoustic sensing (DAS) system is built and used to measure the ground vibration waves generated by people walking.Second, algorithms: We first collect the training data by measuring the ground vibration waves, label the data, and use the data to train the neural network models to perform pedestrian recognition.Third, hardware accelerators: We use HLS tools to design hardware modules on FPGA for data collection and pre-processing and integrate them with the downstream neural network accelerators to perform in-line real-time pedestrian detection. The final detection results are sent back from FPGA to the host CPU. We implement our system FiberFlex with the in-house built DAS system and AMD/Xilinx Kintex7 FPGA KC705 board and verify the whole system using the real-world collected data. We conduct recognition tests on five test subjects of varying ages, heights, and weights in a fixed sensing area. Each subject experienced 20 real-time recognition tests using their daily walking habits, and the subjects were given adequate rest between tests. After 100 tests on five test subjects, the overall real-time recognition accuracy exceeded\(88.0\%\). The whole system uses 55 W of power, 33 W in the optical DAS system and 22 W in the FPGA. Relying on its end-to-end interdisciplinary design, FiberFlex seamlessly combines fiber-optic sensors with FPGA accelerators to enable low-power real-time security monitoring without compromising privacy, making it a valuable addition to the existing security monitoring network. According to FiberFlex, more valuable research can be conducted in the future, such as fall monitoring for the elderly, migration of identification networks between different application scenarios, and improvement of anti-interference performance in more complex environments. In future perception networks, where the “eyes” are not feasible, let’s use fiber optic touch instead. 
    more » « less