IPv6's large address space allows ample freedom for choosing and assigning addresses. To improve client privacy and resist IP-based tracking, standardized techniques leverage this large address space, including privacy extensions and provider prefix rotation. Ephemeral and dynamic IPv6 addresses confound not only tracking and traffic correlation attempts, but also traditional network measurements, logging, and defense mechanisms. We show that the intended anti-tracking capability of these widely deployed mechanisms is unwittingly subverted by edge routers using legacy IPv6 addressing schemes that embed unique identifiers. We develop measurement techniques that exploit these legacy devices to make tracking such moving IPv6 clients feasible by combining intelligent search space reduction with modern high-speed active probing. Via an Internet-wide measurement campaign, we discover more than 9M affected edge routers and approximately 13k /48 prefixes employing prefix rotation in hundreds of ASes worldwide. We mount a six-week campaign to characterize the size and dynamics of these deployed IPv6 rotation pools, and demonstrate via a case study the ability to remotely track client address movements over time. We responsibly disclosed our findings to equipment manufacturers, at least one of which subsequently changed their default addressing logic.
more »
« less
This content will become publicly available on September 3, 2026
Unveiling IPv6 Scanning Dynamics: A Longitudinal Study Using Large Scale Proactive and Passive IPv6 Telescopes
We introduce new tools and vantage points to develop and integrate proactive techniques to attract IPv6 scan traffic, thus enabling its analysis. By deploying the largest-ever IPv6 proactive telescope in a production ISP network, we collected over 600M packets of unsolicited traffic from 1.9k Autonomous Systems in 10 months. We characterized the sources of unsolicited traffic, evaluated the effectiveness of five major features across the network stack, and inferred scanners' sources of target addresses and their strategies.
more »
« less
- PAR ID:
- 10647242
- Publisher / Repository:
- ACM SIGCOMM Conference on emerging Networking EXperiments and Technologies (CoNEXT)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Networking
- Volume:
- 3
- Issue:
- CoNEXT3
- ISSN:
- 2834-5509
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IP addresses are commonly used to identify hosts or properties of hosts. The address assigned to a host may change, however, and the extent to which these changes occur in time as well as in the address space is currently unknown, especially in IPv6. In this work, we take a first step towards understanding the dynamics of IPv6 address assignments in various networks around the world and how they relate to IPv4 dynamics. We present fine-grained observations of dynamics using data collected from over 3,000 RIPE Atlas probes in dual-stack networks. RIPE Atlas probes in these networks report both their IPv4 and their IPv6 address, allowing us to track changes over time and in the address space. To corroborate and extend our findings, we also use a dataset containing 32.7 billion IPv4 and IPv6 address associations observed by a major CDN. Our investigation of temporal dynamics with these datasets shows that IPv6 assignments have longer durations than IPv4 assignments---often remaining stable for months---thereby allowing the possibility of long-term fingerprinting of IPv6 subscribers. Our analysis of spatial dynamics reveals IPv6 address-assignment patterns that shed light on the size of the address pools network operators use in domestic networks, and provides preliminary results on the size of the prefixes delegated to home networks. Our observations can benefit many applications, including host reputation systems, active probing methods, and mechanisms for privacy preservation.more » « less
-
The Domain Name System (DNS) is an essential service for the Internet which maps host names to IP addresses. The DNS Root Sever System operates the top of this namespace. RIPE Atlas observes DNS from more than 11k vantage points (VPs) around the world, reporting the reliability of the DNS Root Server System in DNSmon. DNSmon shows that loss rates for queries to the DNS Root are nearly 10\% for IPv6, much higher than the approximately 2\% loss seen for IPv4. Although IPv6 is ``new,'' as an operational protocol available to a third of Internet users, it ought to be just as reliable as IPv4. We examine this difference at a finer granularity by investigating loss at individual VPs. We confirm that specific VPs are the source of this difference and identify two root causes: VP \emph{islands} with routing problems at the edge which leave them unable to access IPv6 outside their LAN, and VP \emph{peninsulas} which indicate routing problems in the core of the network. These problems account for most of the loss and nearly all of the difference between IPv4 and IPv6 query loss rates. Islands account for most of the loss (half of IPv4 failures and 5/6ths of IPv6 failures), and we suggest these measurement devices should be filtered out to get a more accurate picture of loss rates. Peninsulas account for the main differences between root identifiers, suggesting routing disagreements root operators need to address. We believe that filtering out both of these known problems provides a better measure of underlying network anomalies and loss and will result in more actionable alerts.more » « less
-
Internet-wide scanning is a critical tool for security researchers and practitioners alike. By exhaustively exploring the entire IPv4 address space, Internet scanning has driven the development of new security protocols, found and tracked vulnerabilities, improved DDoS defenses, and illuminated global censorship. Unfortunately, the vast scale of the IPv6 address space—340 trillion trillion trillion addresses—precludes exhaustive scanning, necessitating entirely new IPv6-specific scanning methods. As IPv6 adoption continues to grow, developing IPv6 scanning methods is vital for maintaining our capability to comprehensively investigate Internet security. We present 6SENSE, an end-to-end Internet-wide IPv6 scanning system. 6SENSE utilizes reinforcement learning coupled with an online scanner to iteratively reduce the space of possible IPv6 addresses into a tractable scannable subspace, thus discovering new IPv6 Internet hosts. 6SENSE is driven by a set of metrics we identify and define as key for evaluating the generality, diversity, and correctness of IPv6 scanning. We evaluate 6SENSE and prior generative IPv6 discovery methods across these metrics, showing that 6SENSE is able to identify tens of millions of IPv6 hosts, which compared to prior approaches, is up to 3.6x more hosts and 4x more end-site assignments, across a more diverse set of networks. From our analysis, we identify limitations in prior generative approaches that preclude their use for Internet-scale security scans. We also conduct the first Internet-wide scanning-driven security analysis of IPv6 hosts, focusing on TLS certificates unique to IPv6, surveying open ports and security-sensitive services, and identifying potential CVEs.more » « less
-
Security research has made extensive use of exhaustive Internet-wide scans over the recent years, as they can provide significant insights into the overall state of security of the Internet, and ZMap made scanning the entire IPv4 address space practical. However, the IPv4 address space is exhausted, and a switch to IPv6, the only accepted long-term solution, is inevitable. In turn, to better understand the security of devices connected to the Internet, including in particular Internet of Things devices, it is imperative to include IPv6 addresses in security evaluations and scans. Unfortunately, it is practically infeasible to iterate through the entire IPv6 address space, as it is 2^96 times larger than the IPv4 address space. Therefore, enumeration of active hosts prior to scanning is necessary. Without it, we will be unable to investigate the overall security of Internet-connected devices in the future. In this paper, we introduce a novel technique to enumerate an active part of the IPv6 address space by walking DNSSEC-signed IPv6 reverse zones. Subsequently, by scanning the enumerated addresses, we uncover significant security problems: the exposure of sensitive data, and incorrectly controlled access to hosts, such as access to routing infrastructure via administrative interfaces, all of which were accessible via IPv6. Furthermore, from our analysis of the differences between accessing dual-stack hosts via IPv6 and IPv4, we hypothesize that the root cause is that machines automatically and by default take on globally routable IPv6 addresses. This is a practice that the affected system administrators appear unaware of, as the respective services are almost always properly protected from unauthorized access via IPv4. Our findings indicate (i) that enumerating active IPv6 hosts is practical without a preferential network position contrary to common belief, (ii) that the security of active IPv6 hosts is currently still lagging behind the security state of IPv4 hosts...more » « less
An official website of the United States government
