skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2131987

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although Internet routing security best practices have recently seen auspicious increases in uptake, Internet Service Providers (ISPs) have limited incentives to deploy them. They are operationally complex and expensive to implement and provide little competitive advantage. The practices with significant uptake protect only against origin hijacks, leaving unresolved the more general threat of path hijacks. We propose a new approach to improved routing security that achieves four design goals: improved incentive alignment to implement best practices; protection against path hijacks; expanded scope of such protection to customers of those engaged in the practices; and reliance on existing capabilities rather than needing complex new software in every participating router. Our proposal leverages an existing coherent core of interconnected ISPs to create a zone of trust, a topological region that protects not only all networks in the region, but all directly attached customers of those networks. Customers benefit from choosing ISPs committed to the practices, and ISPs thus benefit from committing to the practices. We discuss the concept of a zone of trust as a new, more pragmatic approach to security that improves security in a region of the Internet, as opposed to striving for global deployment. We argue that the aspiration for global deployment is unrealistic, since the global Internet includes malicious actors. We compare our approach to other schemes and discuss how a related proposal, ASPA, could be used to increase the scope of protection our scheme achieves. We hope this proposal inspires discussion of how the industry can make practical, measurable progress against the threat of route hijacks in the short term by leveraging institutionalized cooperation rooted in transparency and accountability. 
    more » « less
  2. Since the exhaustion of unallocated IP addresses at the Internet Assigned Numbers Authority (IANA), a market for IPv4 addresses has emerged. In complement to purchasing address space, leasing IP addresses is becoming increasingly popular. Leasing provides a cost-effective alternative for organizations that seek to scale up without a high upfront investment. However, malicious actors also benefit from leasing as it enables them to rapidly cycle through different addresses, circumventing security measures such as IP blocklisting. We explore the emerging IP leasing market and its implications for Internet security. We examine leasing market data, leveraging blocklists as an indirect measure of involvement in various forms of network abuse. In February 2025, leased prefixes were 2.89× more likely to be flagged by blocklists compared to non-leased prefixes. This result raises questions about whether the IP leasing market should be subject to closer scrutiny. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  3. Free, publicly-accessible full text available March 7, 2026
  4. This dataset contains anonymized layer 1-4 packet headers of two-way passive traces captured on a 100 GB link between Los Angeles and Dallas. These data are useful for research on the characteristics of Internet traffic, including application breakdown, security events, geographic and topological distribution, flow volume and duration. 
    more » « less
  5. This dataset contains anonymized layer 1-4 packet headers of two-way passive traces captured on a 100 GB link between Los Angeles and San Jose. These data are useful for research on the characteristics of Internet traffic, including application breakdown, security events, geographic and topological distribution, flow volume and duration. Passive 100G sampler is offered to researchers at commercial organizations when they request Anonymized Internet Traces. These data are part of the 2024 Anonymized Traces 100G dataset. The files consist of 5 second snapshots of a bidirectional capture taken in November 2024. 
    more » « less
  6. This publicly available dataset contains metadata for all 100g passive monthly traces. 
    more » « less
  7. Free, publicly-accessible full text available November 4, 2025
  8. Free, publicly-accessible full text available November 4, 2025