skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Role of the Schwinger effect in superradiant axion lasers
Superradiance can cause the axion cloud around a rotating black hole to reach extremely high densities, and the decay of these axions can produce a powerful laser. The electric field of these lasers is strong enough that the Schwinger effect may become significant, resulting in the production of an electron-positron plasma. We explore the dynamics between axion lasers and this electron-positron plasma. While there are several mechanisms by which the inclusion of a plasma can impact the laser’s behavior, the most significant of these mechanisms is that the electron-positron plasma imparts an effective mass on the photon. As the plasma frequency increases, axion decay becomes energetically unfavorable, up to the point where the axion no longer decays into photons, shutting off the laser. We find that the impact of the electron-positron plasma on the dynamics of the system depend heavily on the parameters, specifically the axion mass m ϕ and the superradiant coupling α , and that we may divide parameter space into three regimes: the unenhanced, enhanced, and unstable regimes. In the unenhanced and enhanced regimes, the system will eventually settle into an equilibrium state, emitting a laser of constant luminosity while the number of axions remains constant. In the unenhanced regime, this equilibrium state can be calculated while neglecting the effects of Schwinger production; in the enhanced regime, the equilibrium luminosity is slightly larger than what it would be without Schwinger production. In the unstable regime, the electron-positron plasma suppresses axion decay to the point where the system is never able to reach equilibrium; instead, the axions continue to grow superradiantly. In all three cases, the production of superradiant axions will eventually cause the black hole to spin down to the point where superradiance ceases.  more » « less
Award ID(s):
2033382
PAR ID:
10647274
Author(s) / Creator(s):
Publisher / Repository:
Phys. Rev. D 112, 083031
Date Published:
Journal Name:
Physical Review D
Volume:
112
Issue:
8
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing$$N_{e+}\ge 10^5$$ N e + 10 5 positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator. 
    more » « less
  2. We study the sensitivity of fixed target experiments to hadronically coupled axionlike particles (ALPs) produced in kaon decays, with a particular emphasis on current and upcoming Short-Baseline Neutrino (SBN) experiments. We demonstrate that below the kaon decay mass threshold ( m a < m K m π ) kaon decay is the dominant production mechanism for ALPs at neutrino experiments, larger by many orders of magnitude than production in pseudoscalar mixing. Such axions can be probed principally by the diphoton and dimuon final states. In the latter case, even if the axion does not couple to muons at tree level, such a coupling is induced by the renormalization group flow from the UV scale. We reinterpret prior results by CHARM and MicroBooNE through these channels and show that they constrain new areas of heavy axion parameter space. We also show projections of the sensitivity of the SBN experiment and Deep Underground Neutrino Experiment (DUNE) to axions through these channels, which reach up to a decade higher in the axion decay constant beyond existing constraints. DUNE projects to have a sensitivity competitive with other world-leading upcoming experiments. Published by the American Physical Society2024 
    more » « less
  3. Nonrelativistic axions can be efficiently produced in the polar caps of pulsars, resulting in the formation of a dense cloud of gravitationally bound axions. Here, we investigate the interplay between such an axion cloud and the electrodynamics in the pulsar magnetosphere, focusing specifically on the dynamics in the polar caps, where the impact of the axion cloud is expected to be most pronounced. For sufficiently light axions m a 10 7 eV , we show that the axion cloud can occasionally screen the local electric field responsible for particle acceleration and pair production, inducing a periodic nulling of the pulsar’s intrinsic radio emission. At larger axion masses, the small-scale fluctuations in the axion field tend to suppress the backreaction of the axion on the electrodynamics; however, we point out that the incoherent oscillations of the axion in short-lived regions of vacuum near the neutron star surface can produce a narrow radio line, which provides a complementary source of radio emission to the plasma-resonant emission processes identified in previous work. While this Letter focuses on the leading order correction to pair production in the magnetosphere, we speculate that there can exist dramatic deviations in the electrodynamics of these systems when the axion backreaction becomes nonlinear. Published by the American Physical Society2024 
    more » « less
  4. In the strong magnetic field of a neutron star’s magnetosphere, axions coupled to electromagnetism develop a nonzero probability to convert into photons. Past studies have revealed that the axion-photon conversion can be resonantly enhanced. We recognize that the axion-photon resonance admits two parametrically distinct resonant solutions, which we call the mass-matched resonance and the Euler-Heisenberg assisted resonance. The mass-matched resonance occurs at a point in the magnetosphere where the radially-varying plasma frequency crosses the axion mass ω pl m a . The Euler-Heisenberg assisted resonance occurs where the axion energy satisfies ω ( 2 ω pl 2 / 7 g γ γ γ γ B ¯ 2 ) 1 / 2 . This second resonance is made possible though the strong background magnetic field B ¯ , as well as the nonzero Euler-Heisenberg four-photon self-interaction, which has the coupling g γ γ γ γ = 8 α 2 / 45 m e 4 . We study the resonant conversion of relativistic axion dark radiation into photons via the Euler-Heisenberg assisted resonance, and we calculate the expected electromagnetic radiation assuming different values for the axion-photon coupling g a γ γ and different amplitudes for the axion flux onto the neutron star Φ a . We briefly discuss several possible sources of axion dark radiation. Achieving a sufficiently strong axion flux to induce a detectable electromagnetic signal seems unlikely. Published by the American Physical Society2024 
    more » « less
  5. The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of | g a e μ | 10 6 . For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of | g a e μ | 10 11 , competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits. Published by the American Physical Society2024 
    more » « less