Abstract With rapid climate warming, some coastal high‐latitude ecosystems are experiencing more frequent tidal floods. Yet little is known about tundra plant‐community responses to flooding, and whether Arctic warming may modulate such responses.In a 2‐year, full‐factorial field experiment in coastal tundra wetlands of the Yukon‐Kuskokwim (Y‐K) Delta (western Alaska), we simulated periodic tidal flood events at two severities under both ambient and warmed summer conditions and measured above‐ground plant‐community responses. Low‐severity flooding represented overbank flooding 1 day per month, which is consistent with projections in the next 5 years. High‐severity flooding represented a more impactful flooding regime (three consecutive days per month) that is projected to occur in the next 10 years. Our warming treatment (+1°C) also represented a change projected in the next 10 years.Regardless of temperature, high‐severity flooding increased graminoid biomass by >45%, in turn increasing live plant‐community biomass by >18%. Low‐severity flooding had similar, though weaker, effects. Flooding had overall negative effects on both forb and shrub biomass, though shrub responses were weaker. Only during the second summer, warming increased graminoid biomass by 20% and tended to increase shrub biomass, regardless of flooding. Concurrently, warming enhanced standing‐dead graminoid biomass by 20%, while high‐severity flooding decreased it by 15%. Therefore, wet tundra that was both flooded and warmed had the greatest proportion of graminoids and total live biomass, but standing‐dead biomass comparable to that of unmanipulated wet tundra.Synthesis. While our manipulations simulated flooding and warming regimes expected in the wetlands of the Y‐K Delta over the same, near‐future (5‐to‐10 years) time frame, flooding had stronger effects than warming. What is striking is the rate at which graminoid increases occurred, becoming apparent after only two monthly flood events in the first experimental year. Flooding‐induced decreases in standing‐dead biomass suggests that the incorporation of dead plant material into the litter layer might be facilitated by tidal floods. These rapid increases in plant biomass and potentially biomass turnover, especially of graminoids, which are characterized by high‐quality litter, may have major implications for carbon and nutrient cycling of more frequently flooded coastal ecosystems in a warmer Arctic.
more »
« less
Wetland biomass responses to experimental flooding and warming, Yukon-Kuskokwim Delta (Western Alaska, USA), 2022-2023
This dataset was used to answer the question: to what extent do flooding and warming alter plant-community structure in the high-latitude coastal wetlands of the Yukon-Kuskokwim (Y-K) Delta (Western Alaska, USA)? Over two years, we simulated periodic summer tidal flood events at two severity levels and passively increased summer temperatures in a full-factorial field experiment, and measured alterations in aboveground plant functional group (PFG) biomass and composition. We simulated low-severity and high-severity flooding to represent near-future flooding regimes for the Y-K Delta, projected respectively in the next ~5 and ~10 years. The experiment was established in a wet sedge-shrub meadow, an ecotype covering greater than 10% of the vegetated area of the central coast of the Y-K Delta. We characterized aboveground plant-community structure using the point intercept frequency (PIM) methodology. We clumped vascular plant species into five broad PFGs: graminoids, deciduous and evergreen shrubs, forbs, and standing-dead graminoids.
more »
« less
- Award ID(s):
- 2113641
- PAR ID:
- 10647393
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Aboveground biomass Belowground biomass Alaska Arctic tundra Plant functional group (PFG) Roots Tidal floods Yukon-Kuskokwim (Y-K) Delta Point intercept method (PIM) Graminoids Shrubs Forbs
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset was used to answer the question: how do flooding and warming alter carbon dioxide and methane flux from coastal wetlands of the Yukon-Kuskokwim (Y-K) Delta (Western Alaska, USA)? Over two years, we simulated periodic summer tidal flood events at two severity levels and passively increased summer temperatures in a full-factorial field experiment, and the response of gas measured the response of carbon dioxide and methane fluxes. We simulated low-severity and high-severity flooding to represent near-future flooding regimes for the Y-K Delta, projected respectively in the next ~5 and ~10 years. The experiment was established in a wet sedge-shrub meadow, an ecotype covering greater than 10% of the vegetated area of the central coast of the Y-K Delta. We measured gas fluxes approximately twice per week using static chambers during the summer of 2023.more » « less
-
This dataset was created to understand plant trait responses to warming, flooding, and herbivory in the Yukon-Kuskokwim (Y-K) Delta (western Alaska, USA). We conducted a one-year field mesocosm experiment in which we passively increased temperatures, simulated periodic tidal flooding at two intensity levels (low and high), and applied three components of goose herbivory (grazing, feces addition, and trampling) during the summer growing season. Our treatments reflect changes expected in the Y-K Delta in the next 10-20 years. We conducted the experiment in three community types: a wet sedge-shrub meadow, a tundra, and a transitional wet community between the meadow and tundra, and only sampled the dominant species in these communities. At the end of the season, we harvested height, leaf area, specific leaf area, and leaf dry matter content from randomly selected individuals.more » « less
-
To predict future changes in high latitude biomes, it is important to understand how plant communities will respond to increased temperature. Across sub-arctic systems, warming generally increases aboveground biomass in plant communities. Specifically, in arctic graminoid systems, experimental warming has been shown to increase productivity, aboveground biomass and leaf litter production, and stimulate early-season growth. Warming can also decrease species richness, and reduce foliar nitrogen (N) in aboveground biomass over the growing season. Migrating geese are important grazers in arctic and subarctic ecosystems during summer breeding months. Avian herbivores depend on high quality forage (high N) and are often found at high enough densities to impact vegetation communities. Exclosure experiments show that goose herbivory reduces biomass of herbaceous species but increases net above-ground primary production and N concentrations of grazing-tolerant sedges, and sometimes even increases species richness. Goose herbivory also alters plant physiological processes as evidenced by increased N uptake by plants, as well as the biophysical processes that affect N cycling through trampling and fecal deposition. Thus, high-density populations of avian herbivores can have top-down control on their vegetation communities. While increasing global temperatures may increase aboveground biomass and decrease species richness in plant communities, herbivory could potentially mediate, or even reverse, these responses. For example, Post and Pedersen (2008) suggest that herbivory may exacerbate plant response to warming because both effects increase rates of productivity, while simultaneously reducing the effects of warming on aboveground biomass. If the interaction between warming and herbivory causes a shift in plant abundance and community functional groups, this could cascade through the system resulting in changes in nutrient cycling and plant-animal feedbacks. The Yukon-Kuskokwim (Y-K) Delta is one of the largest river deltas in the world and is a globally important breeding area for millions of long-distance migratory waterfowl and shorebird species. The majority of these species nest in high densities close to the ocean among lowland coastal habitat. Geese populations utilize overlapping habitats and shift from more coastal to more interior habitats over the growing season. The expectations for how vegetation responds to increasing temperature and changes in herbivory with climate change will vary for different plant communities. We propose to conduct an experiment that investigates the impact of warming and herbivory on three coastal sub-arctic vegetation communities in the Y-K Delta addressing the following questions: 1) How does warming impact vegetation biomass and community composition; 2) How does herbivory impact species composition and plant functional groups; and 3) How do the different responses to warming and herbivory interact?more » « less
-
While the Arctic warms rapidly, several coastal tundra regions face increasing threats from altered flooding regimes. Yet, how flooding shapes coastal tundra ecosystems remains largely unknown. We experimentally examined how increased tidal flooding, under both ambient and elevated temperatures, influences key drivers of ecosystem functioning: micro-environment, vegetation, and organic matter decomposition. Data were collected across three summers (2022-2024) in a low-Arctic coastal tundra heath of the Yukon-Kuskokwim Delta (Alaska) – one of the largest high-latitude riverine deltas in North America. In May 2022, soon after snowmelt, we selected seven blocks within the focal tundra heath. Each block contained six plots, for a total of 42 plots. Plots within blocks were randomly assigned to a factorial combination of experimental monthly tidal floods (three levels: no-flooding, low-severity flooding, and high-severity flooding) and experimental warming (two levels: ambient and higher temperatures). We focused on three response categories: (1) micro-environmental changes, including air and soil temperatures, soil active layer thickness, redox potential, salinity, potential of hydrogen (pH), and chemistry; (2) vegetation responses, such as aboveground community composition and biomass, plant height, and root production; and (3) responses of organic matter decomposition (mass loss, decomposition rate, and stabilization factor).more » « less
An official website of the United States government
