Abstract CdS nanowires and film Schottky diodes are fabricated and diode properties are compared. Effect of SnO 2 on CdS film diode properties is investigated. CdS film/Au on 100 nm SnO 2 substrate demonstrates like-resistor characteristics and increase in SnO 2 thickness corrects resistor behavior, however the effective reverse saturation current density J o is significantly high and shunt resistance are considerably low, implying that SnO 2 slightly prevents impurities migration from CdS films into ITO but cause additional issues. Thickness of CdS film on diode properties is further investigated and increasing CdS film thickness improved J o by one order of magnitude, however shunt resistance is obviously low, suggesting intrinsic issues in CdS film. 100 nm CdS nanowire/Au diodes reduce J o by three orders of magnitude in the dark and two orders of magnitude in the light respectively and their shunt resistance is significantly enhanced by 70 times when comparing with those of the CdS film diodes. The wide difference can be attributed to the fact that CdS nanowires overcome intrinsic issues in CdS film and thus demonstrate significantly well- defined diode behavior. Simulation found that CdS nanowire diodes have low compensating acceptor type traps and interface state density of 5.0 × 10 9 cm −2 , indicating that interface recombination is not a dominated current transport mechanism in the nanowire diodes. CdS film diodes are simulated with acceptor traps and interface state density increased by two order of magnitude and shunt resistance reduced by one order of magnitude, indicating that high density of interface states and shunt paths occur in the CdS film diodes.
more »
« less
This content will become publicly available on November 14, 2026
Propulsion of diodes in aqueous suspension under alternating-current or light stimulation
Micro- or nano-diodes suspended in water can propel controllably under alternating-current fields or light without the need for fuels such as hydrogen peroxide or urea. This makes them promising candidates for miniature motors in biomedical and other applications. However, the mechanisms underlying their propulsion remain unclear. This study investigates the propulsion of diodes floating in an aqueous solution at the millimeter scale, which facilitates observation of motion, allowing direct correlation with electrical measurements of device properties. We find that the diode’s propulsion is driven by forward current under an alternating-current field and by photocurrent under illumination. The velocity of propulsion scales linearly with the net current, with the rectified or photogenerated current creating an imbalance of ions at the ends of the diodes. This, in turn, generates an electric field that induces electrophoretic flow around the diode and propels the diode. Additionally, we assess the velocity of diodes intentionally damaged by high reverse bias and find that it decreases significantly because of the reduced difference between forward and reverse currents. These results suggest potential uses of diode propulsion for characterizing and separating bottom-up-grown nano-/micro- diodes based on their reverse-saturation current, as well as nanomotors formed from multiple-junction nanowire diodes that can self-propel in water under light.
more »
« less
- PAR ID:
- 10647461
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 138
- Issue:
- 18
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The effects of downstream plasma exposure with O 2 , N 2 or CF 4 discharges on Si-doped Ga 2 O 3 Schottky diode forward and reverse current-voltage characteristics were investigated. The samples were exposed to discharges with rf power of 50 W plasma at a pressure of 400 mTorr and a fixed treatment time of 1 min to simulate dielectric layer removal, photoresist ashing or surface cleaning steps. Schottky contacts were deposited through a shadow mask after exposure to avoid any changes to the surface. A Schottky barrier height of 1.1 eV was obtained for the reference sample without plasma treatment, with an ideality factor of 1.0. The diodes exposed to CF 4 showed a 0.25 V shift from the I–V of the reference sample due to a Schottky barrier height lowering around 14%. The diodes showed a decrease of Schottky barrier height of 2.5 and 6.5% with O 2 or N 2 treatments, respectively. The effect of plasma exposure on the ideality factor of diodes treated with these plasmas was minimal; 0.2% for O 2 and N 2 , 0.3% for CF 4 , respectively. The reverse leakage currents were 1.2, 2.2 and 4.8 μ A cm −2 for the diodes treated with O 2 , and CF 4 , and N 2 respectively. The effect of downstream plasma treatment on diode on-resistance and on-off ratio were also minimal. The changes observed are much less than caused by exposure to hydrogen-containing plasmas and indicate that downstream plasma stripping of films from Ga 2 O 3 during device processing is a relatively benign approach.more » « less
-
We report on the growth of Si-doped homoepitaxial β-Ga2O3 thin films on (010) Ga2O3 substrates via metal-organic chemical vapor deposition (MOCVD) utilizing triethylgallium (TEGa) and trimethylgallium (TMGa) precursors. The epitaxial growth achieved an impressive 9.5 μm thickness at 3 μm/h using TMGa, a significant advance in material growth for electronic device fabrication. This paper systematically studies the Schottky barrier diodes fabricated on the three MOCVD-grown films, each exhibiting variations in the epilayer thickness, doping levels, and growth rates. The diode from the 2 μm thick Ga2O3 epilayer with TEGa precursor demonstrates promising forward current densities, the lowest specific on-resistance, and the lowest ideality factor, endorsing TEGa’s potential for MOCVD growth. Conversely, the diode from the 9.5 μm thick Ga2O3 layer with TMGa precursor exhibits excellent characteristics in terms of lowest leakage current, highest on-off ratio, and highest reverse breakdown voltage of −510 V without any electric field management, emphasizing TMGa’s suitability for achieving high growth rates in Ga2O3 epilayers for vertical power electronic devices.more » « less
-
The recent development of soft fluidic analogs to electrical components aims to reduce the demand for rigid and bulky electromechanical valves and hard electronic controllers within soft robots. This ongoing effort is advanced in this work by creating sheet‐based fluidic diodes constructed from readily available flexible sheets of polymers and textiles using a layered fabrication approach amenable to manufacturing at scale. These sheet‐based fluidic diodes restrict reverse flow over a wide range of differential pressures—exhibiting a diodicity (the ratio of resistance to reverse vs forward flow) of approximately 100×—to address functional limitations exhibited by prior soft fluidic diodes. By harnessing the diode's highly unidirectional flow, soft devices capable of 1) facilitating the capture and storage of pressurized fluid, 2) performing Boolean operations using diode logic, 3) enabling binary encoding of circuits by preventing interactions between different pressurized input lines, and 4) converting oscillating input pressures to a direct current‐like, positively phased output are realized. This work exemplifies the use of fluidic diodes to achieve complex patterns of actuation and unique capabilities through embedded fluidic circuitry, enabling future development of sheet‐based systems—including wearable and assistive robots made from textiles—as well as other soft robotic devices.more » « less
-
Here, we use magnetically driven self-assembled achiral swimmers made of two to four superparamagnetic micro-particles to provide insight into how swimming kinematics develop in complex, shear-thinning fluids. Two model shear-thinning polymer fluids are explored, where measurements of swimming dynamics reveal contrasting propulsion kinematics in shear-thinning fluids vs a Newtonian fluid. When comparing the velocity of achiral swimmers in polymer fluids to their dynamics in water, we observe kinematics dependent on (1) no shear-thinning, (2) shear-thinning with negligible elasticity, and (3) shear-thinning with elasticity. At the step-out frequency, the fluidic environment's viscoelastic properties allow swimmers to propel faster than their Newtonian swimming speed, although their swimming gait remains similar. Micro-particle image velocimetry is also implemented to provide insight into how shear-thinning viscosity fluids with elasticity can modify the flow fields of the self-assembled magnetic swimmers. Our findings reveal that flow asymmetry can be created for symmetric swimmers through either the confinement effect or the Weissenberg effect. For pseudo-chiral swimmers in shear-thinning fluids, only three bead swimmers show swimming enhancement, while four bead swimmers always have a decreased step-out frequency velocity compared to their dynamics in water.more » « less
An official website of the United States government
