skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 24, 2026

Title: Boron-mediated modular assembly of tetrasubstituted alkenes
Abstract Alkenes are a central part of organic chemistry1–3. However, although most alkenes are easy to prepare, the controlled synthesis of tetrasubstituted alkenes, those with four groups around the central C=C bond, remains challenging1–5. Here we report the boron-mediated assembly of tetrasubstituted alkenes with complete control of the double-bond geometry. The migrating group and electrophile add syn across the alkyne. Mild oxidation leads to intermediate borinic esters6, which can be isolated and purified or reacted directly in a range of transformations, including cross-couplings and homologation reactions. In particular, subjecting the intermediate borinic esters to Zweifel7,8olefination conditions can give either retention or inversion of the double-bond geometry, depending on whether base is present or not. Different positional and stereoisomers of the tetrasubstituted alkenes can be easily accessed, highlighting the breadth and versatility of the method. This was showcased through its successful application to the rapid synthesis of drug molecules and natural products with high yield and stereocontrol. Not only does this method provide efficient access to the long-standing challenge of the stereocontrolled synthesis of tetrasubstituted alkenes but it also introduces new concepts related to the intervention of non-classical borenium ions in the Zweifel olefination.  more » « less
Award ID(s):
2400056
PAR ID:
10647582
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
NPG
Date Published:
Journal Name:
Nature
Volume:
643
Issue:
8073
ISSN:
0028-0836
Page Range / eLocation ID:
975 to 982
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although chelation-assisted C–H olefination has been intensely investigated, Pd( ii )-catalyzed C–H olefination reactions are largely restricted to acrylates and styrenes. Here we report a quinoline-derived ligand that enables the Pd( ii )-catalyzed olefination of the C(sp 2 )–H bond with simple aliphatic alkenes using a weakly coordinating monodentate amide auxiliary. Oxygen is used as the terminal oxidant with catalytic copper as the co-oxidant. A variety of functional groups in the aliphatic alkenes are tolerated. Upon hydrogenation, the ortho -alkylated product can be accessed. The utility of this reaction is also demonstrated by the late-stage diversification of drug molecules. 
    more » « less
  2. Abstract Magnetic resonance imaging of [1‐13C]hyperpolarized carboxylates (most notably, [1‐13C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of1H and13C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1‐13C‐enriched forms with parahydrogen over Rh/TiO2catalysts in methanol‐d4and in D2O. The maximum obtained1H polarization was 0.6±0.2 % (for propyl acetate in CD3OD), while the highest13C polarization was 0.10±0.03 % (for ethyl acetate in CD3OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon‐carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen‐induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum1H and13C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study. 
    more » « less
  3. Abstract Hydroalkylation of alkynes is a powerful method for alkene synthesis. However, regioselectivity has been difficult to achieve in transformations of internal alkynes hindering applications in the synthesis of trisubstituted alkenes. To overcome these limitations, we explored using boryl groups as versatile directing groups that can control the regioselectivity of the hydroalkylation and subsequently be replaced in a cross‐coupling reaction. The result of our exploration is a nickel‐catalyzed hydroalkylation of alkynyl boronamides that provides access to a wide range of trisubstituted alkenes with high regio‐ and diastereoselectivity. The reaction can be accomplished with a variety of coupling partners, including primary and secondary alkyl iodides, α‐bromo esters, α‐chloro phthalimides, and α‐chloro boronic esters. Preliminary studies of the reaction mechanism provide evidence for the hydrometalation mechanism and the formation of alkyl radical intermediates. 
    more » « less
  4. Alkyl boronic acids and esters are versatile synthetic intermediates that generally require several steps to synthesize. Three-component alkene arylboration reactions allow for the rapid synthesis of alkyl boronic esters. Herein, we report the base-free aerobic Pd-catalyzed three-component alkene arylboration, which allows direct access, in a single step, to alkyl boronic esters from readily available precursors: aryl boronic acids, alkenes, and bis(pinacol)diboron. This approach allows for the formal insertion of an alkene into an Ar–B bond, and thus, generates an alkyl boronic ester from an aryl boronic acid. The reaction proceeds with both electron-rich and electron-deficient aryl boronic acids as well as strained cyclic, internal, and terminal olefins. The reactions are regioselective: 1,2-arylboration products are formed with strained cyclic alkenes and b-alkyl-styrenes while 1,1-arylboration products are generated from terminal alkenes. Forty-five examples are presented with isolated yields of the resulting alkyl boronic esters ranging from 20-74%, along with several examples demonstrating the synthetic utility of the products. Mechanistic investigations support that the catalytic cycle occurs through direct arylboration of the alkene. Further, p-benzyl intermediates form when possible, and the rate of borylation is increased with electron-rich arenes relative to electron-poor. Finally, we demonstrate that aryl boroxines, generated in situ, are essential for the transformation as they rapidly undergo base-free transmetalation with the proposed palladium peroxo intermediate. 
    more » « less
  5. Molecular complexes of vanadium catalyze cis-selective anti-Markovnikov hydroboration of alkynes to generate vinyl boronate esters with appreciable turnover numbers of up to 4000 at room temperature. This represents the first example of the use of vanadium in homogeneous catalytic hydroboration of alkynes. The method is tolerant to various functional groups, including C═C double bonds. Accordingly, 1-hexen-5-yne can be quantitatively and selectively reduced at the triple bond, leaving the double bond unaffected. Preliminary computational analysis of the catalytic cycle reveals both two-state reactivity and previously unknown complexity associated with the redox-active ligand. Specifically, it was found that the ligand can shuttle up to two electrons back-and-forth to and from the metal, which thus adapts three different oxidation states on the catalytic reaction coordinate. 
    more » « less