Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity. The bulk flow behavior of multi-lamellar vesicles (20 °C) and focal conic defects (90 °C) in the lamellar phase was similar. Shear-induced crystallization at temperatures higher than the equilibrium crystallization temperature range resulted in an unusual complex viscosity peak. The effects of processing-relevant parameters including temperature, cooling time, and applied shear were investigated. Knowledge of key low-temperature structure–property-processing relationships for concentrated feedstocks is essential for the sustainable design and manufacturing of surfactant-based consumer products for applications such as cold-water laundry.
more »
« less
This content will become publicly available on August 27, 2026
Effects of additives on the rheology and phase behavior of lamellar-structured concentrated surfactant solutions
Structure-property-processing relationships for model lamellar structured 70 wt.% SLEnS solutions were developed with a combination of rheometry, cross-polarized optical microscopy, calorimetry, small angle X-ray scattering, and rheo-ultrasonic speckle velocimetry. Additives were utilized to maintain high surfactant activity, reduce bulk viscosity and simplify processing. While the bulk flow behavior of neat SLEnS solutions was similar, the effect of some additives was sensitive to the degree of ethoxylation. Linear-chain alcohols (C2-C5) partitioned into inter-bilayer water layers, dehydrating surfactant headgroups and inducing lamellar-to-micellar transitions. Short-chain polyols formed higher-viscosity hexagonal and mixed phases at room temperature through hydrogen bonding with surfactant headgroups. Heating beyond the upper temperature limit weakened these interactions, resulting in low-viscosity solutions. Within the lamellar phase, common salt promoted shear-induced crystallization above the equilibrium temperature range. Propylene glycol suppressed shear-induced crystallization and promoted wall-slip under shear, forming lubrication layers near the wall. These strategies offer practical levers to tune rheology and microstructure of concentrated surfactant systems, with the datasets developed providing a foundation for future modeling. Outcomes from this study inform the sustainable design and efficient processing of concentrated surfactant-based products.
more »
« less
- Award ID(s):
- 2112956
- PAR ID:
- 10647590
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 21
- Issue:
- 34
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 6735 to 6750
- Subject(s) / Keyword(s):
- Concentrated surfactant solutions, ternary systems, lamellar-to-micellar transitions, shear-induced crystallization, wall slip.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Understanding and characterizing the influence of polymers and surfactants on rheology, application, and processing is critical for designing complex fluid formulations for enhanced oil recovery, pharmaceuticals, cosmetics, foods, inks, agricultural sprays, and coatings. It is well-established that the addition of anionic surfactant like sodium dodecyl sulfate (SDS) to an aqueous solution of an oppositely-charged or uncharged polymer like poly(ethylene oxide) (PEO) can result in the formation of the polymer–surfactant association complexes (P 0 S − ACs) and a non-monotonic concentration-dependent variation in zero shear viscosity. However, the extensional rheology response of polymer–surfactant mixtures remains relatively poorly understood, partially due to characterization challenges that arise for low viscosity, low elasticity fluids, even though the response to strong extensional flows impacts drop formation and many processing operations. In this article, we use the recently developed dripping-onto-substrate (DoS) rheometry protocols to characterize the pinching dynamics and extensional rheology response of aqueous P 0 S − solutions formulated with PEO (P 0 ) and SDS (S − ), respectively. We find the PEO–SDS mixtures display a significantly weaker concentration-dependent variation in the extensional relaxation time, filament lifespan, and extensional viscosity values than anticipated by the measured shear viscosity.more » « less
-
Surfactants are often added to particle suspensions in the flow of Newtonian or non-Newtonian fluids for the purpose of reducing particle-particle aggregation and particle-wall adhesion. However, the impact on the flow behavior of such surfactant additions is often overlooked. We experimentally investigate the effect of the addition of a frequently used neutral surfactant, Tween 20, at the concentration pertaining to microfluidic applications on the entry flow of water and three common polymer solutions through a planar cavity microchannel. We find that the addition of Tween 20 has no significant influence on the shear viscosity or extensional flow of Newtonian water and Boger polyethylene oxide solution. However, such a surfactant addition reduces both the shear viscosity and shear-thinning behavior of xanthan gum and polyacrylamide solutions that each exhibit a strong shear-thinning effect. It also stabilizes the cavity flow and delays the onset of flow instability in both cases. The findings of this work can directly benefit microfluidic applications of particle and cell manipulation in Newtonian and non-Newtonian fluids.more » « less
-
Short-wave infrared (SWIR) imaging has been extensively used in defense applications but remains underutilized in the study of soft materials and the broader consumer products industry. Water molecules absorb around ~1450 nm, making moisture-rich objects appear black, whereas surfactants and other common molecules in consumer products do not absorb and provide good contrast. This experimental study showcases the varied capabilities of SWIR imaging in tracking water transport in soft material systems by analyzing dissolution dynamics, tracking phase transitions (when combined with cross-polarized optical imaging), and monitoring drying kinetics in surfactant and polymer solutions. The dynamic phase evolution to equilibria of a binary aqueous solution of a non-ionic surfactant hexaethylene glycol monododecyl ether (C12E6) is presented. The influence of confined hydration in dynamic diffusive interfacial transport (D-DIT) capillaries was investigated by tracking the micellar to hexagonal phase transition concentration (C*). The effects of varying concentrations of an industrially relevant additive - monovalent common salt (NaCl), on the radial (2D) dissolution of lamellar-structured concentrated sodium lauryl ether sulfate (70 wt.% SLE1S) pastes was studied. An equation was developed to estimate the radial dissolution coefficients based on total dissolution time, and surfactant concentrations in the sample and solvent. Water loss was investigated by tracking the drying of aqueous poly(vinyl) alcohol films. In-situ monitoring of drying kinetics is used to draw correlations between the solution viscosity and drying time. SWIR imaging has already revealed previously inaccessible insights into surfactant hydration and holds the potential to become a turnkey method in tracking water transport - enabling better quality control and product stability analysis.more » « less
-
Abstract Shear-induced formation of crystal nuclei in polyamide 11 (PA 11) was studied using a conventional parallel-plate rheometer. Crystallization of PA 11 after shearing the melt at different rates for 60 s was followed by the evolution of the complex viscosity. The sheared samples showed in an optical microscope a gradient structure along the radius, due to the increasing shear rate from the center to the edge. The critical shear rate for shear-induced formation of nuclei was identified at the position where a distinct change of the semicrystalline superstructure is observed, being at around 1 to 2 s −1 . Below this threshold, a space-filled spherulitic superstructure developed as in quiescent-melt crystallization. Above this value, after shearing at rates between 1 and 5 s −1 , an increased number of point-like nuclei was detected, connected with formation of randomly oriented crystals. Shearing the melt at even higher rates led to a further increase of the nuclei number and growth of crystals oriented such that the chain axis is in parallel to the direction of flow. In addition, optical microscopy confirmed formation of long fibrillar structures after shearing at such condition. The critical specific work of flow of PA 11 was calculated to allow a comparison with that of polyamide 66 (PA 66). This comparison showed that in the case of PA 11 more work for shear-induced formation of nuclei is needed than in the case of PA 66, discussed in terms of the chemical structure of the repeat unit in the chains. Graphical abstractmore » « less
An official website of the United States government
