skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Supernova rates and luminosity functions from ASAS-SN: II. 2014–2017 core-collapse supernovae and their subtypes
Aims.The volumetric rates and luminosity functions (LFs) of core-collapse supernovae (ccSN) and their subtypes are important for understanding the cosmic history of star formation and the buildup of ccSNe products. To estimate these rates, we used data of nearby ccSNe discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) from 2014 to 2017, when all observations were made in theVband. Methods.The sample is composed of 174 discovered or recovered events, with high spectroscopic completeness from follow-up observations. This allowed us to obtain a statistically precise and systematically robust estimate of nearby rates for ccSNe and their subtypes. The volumetric rates were estimated by correcting the observed number of events for survey completeness, which was estimated through injection recovery simulations using ccSN light curves. Results.We find a total volumetric rate for ccSNe of 7.0+1.0−0.9× 10−5yr−1Mpc−3h370, at a median redshift of 0.0149, for absolute magnitudes at peakMV, peak ≤ −14 mag. This result is in agreement with previous local volumetric rates. We obtain volumetric rates for the different ccSN subtypes (II, IIn, IIb, Ib, Ic, Ibn, and Ic-BL), and find that the relative fractions of Type II, stripped-envelope, and interacting ccSNe are 63.2%, 32.3%, and 4.4%, respectively. We also estimate a volumetric rate for superluminous SNe of 1.5+4.4−1.1yr−1Gpc−3h370, corresponding to a fraction of 0.002% of the total ccSN rate. We produced intrinsicV-band LFs of ccSNe and their subtypes, and show that ccSN rates steadily decline for increasing luminosities. We further investigated the specific ccSN rate as a function of their host galaxy stellar mass and find that the rate decreases with increasing stellar mass, with significantly higher rates at lower mass galaxies (logM* < 9.0 M).  more » « less
Award ID(s):
2310018
PAR ID:
10647762
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
703
ISSN:
0004-6361
Page Range / eLocation ID:
A34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the volumetric rates and luminosity functions (LFs) of Type Ia supernovae (SNe Ia) from the V-band All-Sky Automated Survey for Supernovae (ASAS-SN) catalogues spanning discovery dates from UTC 2014 January 26 to UTC 2017 December 29. Our standard sample consists of 404 SNe Ia with $$m_{\mathrm{{\it V},peak}} \lt 17\, \mathrm{mag}$$ and Galactic latitude |b| > 15°. Our results are both statistically more precise and systematically more robust than previous studies due to the large sample size and high spectroscopic completeness. We make completeness corrections based on both the apparent and absolute magnitudes by simulating the detection of SNe Ia in ASAS-SN light curves. We find a total volumetric rate for all subtypes of $$R_{\mathrm{tot}} = 2.28^{+0.20}_{-0.20} \times 10^{4}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$$ for $$M_{\mathrm{{\it V},peak}} \lt -16.5\, \mathrm{mag}$$ ($$R_{\mathrm{tot}} = 1.91^{+0.12}_{-0.12} \times 10^{4}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$$ for $$M_{\mathrm{{\it V},peak}} \lt -17.5\, \mathrm{mag}$$) at the median redshift of our sample, zmed = 0.024. This is in agreement (1σ) with the local volumetric rates found by previous studies. We also compile LFs for the entire sample as well as for subtypes of SNe Ia for the first time. The major subtypes with more than one SN include Ia-91bg, Ia-91T, Ia-CSM, and Ia-03fg with total rates of $$R_{\mathrm{Ia-91bg}} = 1.4^{+0.5}_{-0.5} \times 10^{3}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$$, $$R_{\mathrm{Ia-91T}} = 8.5^{+1.6}_{-1.7} \times 10^{2}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$$, $$R_{\mathrm{Ia-CSM}} = 10^{+7}_{-7}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$$, and $$R_{\mathrm{Ia-03fg}} = 30^{+20}_{-20}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$$, respectively. We estimate a mean host extinction of $$E(V-r) \approx 0.2\, \mathrm{mag}$$ based on the shift between our V band and the Zwicky Transient Facility r-band LFs. 
    more » « less
  2. Context. This is the second paper of a series aiming to determine the birth rates of supernovae (SNe) in the local Universe. Aims. We aimed to estimate the SN rates in the local Universe and fit the delay-time distribution of type Ia SNe (SNe Ia) to put constraints on their progenitor scenarios. Methods. We performed a Monte Carlo simulation to estimate volumetric rates using the nearby SN sample introduced in Paper I. The rate evolution of core-collapse (CC) SNe closely follows the evolution of the cosmic star formation history, while the rate evolution of SNe Ia involves the convolution of the cosmic star formation history and a two-component delay-time distribution including a power law and a Gaussian component. Results. The volumetric rates of type Ia, Ibc, and II SNe are derived as 0.325 ± 0.040−0.010+0.016, 0.160 ± 0.028−0.014+0.044, and 0.528 ± 0.051−0.013+0.162(in units of 10−4yr−1Mpc−3h703), respectively. The rate of CCSNe (0.688 ± 0.078−0.027+0.0206) is consistent with previous estimates, which trace the star formation history. Conversely, the newly derived local SN Ia rate is larger than existing results given at redshifts 0.01 < z < 0.1, favoring an increased rate from the Universe at z ∼ 0.1 to the local Universe at z < 0.01. A two-component model effectively reproduces the rate variation, with the power law component accounting for the rate evolution at larger redshifts and the Gaussian component with a delay time of 12.63 ± 0.38 Gyr accounting for the local rate evolution. This delayed component, with its exceptionally long delay time, suggests that the progenitors of these SNe Ia were formed around 1 Gyr after the birth of the Universe, which could only be explained by a double-degenerate progenitor scenario. Comparison with the Palomar Transient Factory (PTF) sample of SNe Ia at z = 0.073 and the morphology of their host galaxies, reveals that the increased SN Ia rate at z < 0.01 is primarily due to the SNe Ia of massive E and S0 galaxies with old stellar populations. Based on the above results, we estimate the Galactic SN rate as 3.08 ± 1.29 per century. 
    more » « less
  3. Abstract Presolar graphite grains carry the isotopic signatures of their parent stars. A significant fraction of presolar graphites show isotopic abundance anomalies relative to solar for elements such as O, Si, Mg, and Ca, which are compatible with nucleosynthesis in core-collapse supernovae (CCSNe). Therefore, they must have condensed from CCSN ejecta before the formation of the Sun. Their most puzzling abundance signature is the22Ne-enriched component Ne-E(L), interpreted as the effect of the radioactive decay of22Na (T1/2= 2.6 yr). Previous works have shown that if H is ingested into the He shell and not fully destroyed before the explosion, the CCSN shock in the He-shell material produces large amounts of22Na. Here we focus on such CCSN models, showing a radioactive26Al production compatible with grain measurements, and analyze the conditions of22Na nucleosynthesis. In these models,22Na is mostly made in the He shell, with a total ejected mass varying between 2.6 × 10−3Mand 1.9 × 10−6M. We show that such22Na may already impact the CCSN light curve 500 days after the explosion, and at later stages it can be the main source powering the CCSN light curve for up to a few years before44Ti decay becomes dominant. Based on the CCSN yields above, the 1274.53 keVγ-ray flux due to22Na decay could be observable for years after the first CCSN light is detected, depending on the distance. This makes CCSNe possible sites to detect a22Naγ-ray signature consistently with the Ne-E(L) component found in presolar graphites. Finally, we discuss the potential contribution from22Na decay to the Galactic positron annihilation rate. 
    more » « less
  4. Abstract Type IIn supernovae (SNe IIn) are a highly heterogeneous subclass of core-collapse supernovae, spectroscopically characterized by signatures of interaction with a dense circumstellar medium (CSM). Here, we systematically model the light curves of 142 archival SNe IIn using the Modular Open Source Fitter for Transients. We find that the observed and inferred properties of SN IIn are diverse, but there are some trends. The typical supernova CSM is dense (∼10−12g cm−3) with highly diverse CSM geometry, with a median CSM mass of ∼1M. The ejecta are typically massive (≳10M), suggesting massive progenitor systems. We find positive correlations between the CSM mass and the rise and fall times of SNe IIn. Furthermore, there are positive correlations between the rise time and fall times and ther-band luminosity. We estimate the mass-loss rates of our sample (where spectroscopy is available) and find a high median mass-loss rate of ∼10−2Myr−1, with a range between 10−3and 1Myr−1. These mass-loss rates are most similar to the mass loss from great eruptions of luminous blue variables, consistent with the direct progenitor detections in the literature. We also discuss the role that binary interactions may play, concluding that at least some of our SNe IIn may be from massive binary systems. Finally, we estimate a detection rate of 1.6 × 105yr−1in the upcoming Legacy Survey of Space and Time at the Vera C. Rubin Observatory. 
    more » « less
  5. Abstract Core-collapse supernovae (CCSNe) are widely accepted to be caused by the explosive death of massive stars with initial masses ≳8M. There is, however, a comparatively poor understanding of how properties of the progenitors—mass, metallicity, multiplicity, rotation, etc.—manifest in the resultant CCSN population. Here, we present a minimally biased sample of nearby CCSNe from the All-Sky Automated Survey for Supernovae survey whose host galaxies were observed with integral-field spectroscopy using MUSE at the Very Large Telescope. This data set allows us to analyze the explosion sites of CCSNe within the context of global star formation properties across the host galaxies. We show that the CCSN explosion site oxygen abundance distribution is offset to lower values than the overall Hiiregion abundance distribution within the host galaxies. We further split the sample at 12 + log 10 ( O / H ) = 8.6 dex and show that within the subsample of low-metallicity host galaxies, the CCSNe unbiasedly trace the star formation with respect to oxygen abundance, while for the subsample of higher-metallicity host galaxies, they preferentially occur in lower-abundance star-forming regions. We estimate the occurrence of CCSNe as a function of oxygen abundance per unit star formation and show that there is a strong decrease as abundance increases. Such a strong and quantified metallicity dependence on CCSN production has not been shown before. Finally, we discuss possible explanations for our result and show that each of these has strong implications not only for our understanding of CCSNe and massive star evolution but also for star formation and galaxy evolution. 
    more » « less