skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Once a Triple, Not Always a Triple: The Evolution of Hierarchical Triples That Yield Merged Inner Binaries
Abstract More than half of all main-sequence (MS) stars have one or more companions, and many of those with initial masses <8Mare born in hierarchical triples. These systems feature two stars in a close orbit (the inner binary) while a tertiary star orbits them on a wider orbit (the outer binary). In hierarchical triples, three-body dynamics combined with stellar evolution drives interactions and, in many cases, merges the inner binary entirely to create a renovated “post-merger binary” (PMB). By leveraging dynamical simulations and tracking binary interactions, we explore the outcomes of merged triples and investigate whether PMBs preserve signatures of their three-body history. Our findings indicate that in 26%–54% of wide double white dwarf (DWD) binaries (s≳ 100 au), the more massive white dwarf (WD) is a merger product, implying that these DWD binaries were previously triples. Overall, we estimate that 44% ± 14% of observed wide DWDs originated in triple star systems and thereby have rich dynamical histories. We also examine MS+MS and MS+red giant mergers manifesting as blue straggler stars (BSSs). These PMBs have orbital configurations and ages similar to most observed BSS binaries. While the triple+merger formation channel can explain the observed chemical abundances, moderate eccentricities, and companion masses in BSS binaries, it likely only accounts for ∼20%–25% of BSSs. Meanwhile, we predict that the majority of observed single BSSs formed as collisions in triples and harbor long-period (>10 yr) companions. Furthermore, both BSS binaries and DWDs exhibit signatures of WD birth kicks.  more » « less
Award ID(s):
2206428
PAR ID:
10647811
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
978
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Gaia mission has detected many white dwarfs (WDs) in binary and triple configurations, and while observations suggest that triple-stellar systems are common in our Galaxy, not much attention was devoted to WDs in triples. For stability reasons, these triples must have hierarchical configurations, i.e., two stars are on a tight orbit (the inner binary), with the third companion on a wider orbit about the inner binary. In such a system, the two orbits torque each other via the eccentric Kozai–Lidov mechanism, which can alter the orbital configuration of the inner binary. We simulate thousands of triple-stellar systems for over 10 Gyr, tracking gravitational interactions, tides, general relativity, and stellar evolution up to their WD fate. As demonstrated here, three-body dynamics coupled with stellar evolution is a critical channel to form tight WD binaries or merge a WD binary. Among these triples, we explore their manifestations as cataclysmic variables, Type Ia supernovae, and gravitational-wave events. The simulated systems are then compared to a sample of WD triples selected from the Gaia catalog. We find that including the effect of mass-loss-induced kicks is crucial for producing a distribution of the inner binary–tertiary separations that is consistent with Gaia observations. Lastly, we leverage this consistency to estimate that, at minimum, 30% of solar-type stars in the local 200 pc were born in triples. 
    more » « less
  2. The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution. 
    more » « less
  3. Abstract We present Hubble Space Telescope far-ultraviolet (FUV) spectra of a blue lurker–white dwarf (BL–WD) binary system in the 4 Gyr open cluster M67. We fit the FUV spectrum of the WD, determining it is a C/O WD with a mass of 0.7 2 0.04 + 0.05 Mand a cooling age of ~400 Myr. This requires a WD progenitor of ~3M, significantly larger than the current cluster turnoff mass of 1.3M. We suggest the WD progenitor star formed several hundred megayears ago via the merger of two stars near the turnoff of the cluster. In this scenario, the original progenitor system was a hierarchical triple consisting of a close, near-equal-mass inner binary, with a tertiary companion with an orbit of a few thousand days. The WD is descended from the merged inner binary, and the original tertiary is now the observed BL. The likely formation scenario involves a common envelope while the WD progenitor is on the AGB, and thus the observed orbital period of 359 days requires an efficient common envelope ejection. The rapid rotation of the BL indicates it accreted some material during its evolution, perhaps via a wind prior to the common envelope. This system will likely undergo a second common envelope in the future and thus could result in a short-period double WD binary or merger of a 0.72MC/O WD and a 0.38Mhelium WD, making this a potential progenitor of an interesting transient such as a sub-Chandrasekhar Type Ia supernova. 
    more » « less
  4. Abstract We present a catalog of ∼10,000 resolved triple star systems within 500 pc of the Sun, constructed using Gaia data. The triples include main-sequence, red giant, and white dwarf components spanning separations of 10–50,000 au. A well-characterized selection function allows us to constrain intrinsic demographics of the triple star population. We find that (a) all systems are compatible with being hierarchical and dynamically stable; (b) mutual orbital inclinations are isotropic for wide triples but show modest alignment as the systems become more compact; (c) primary masses follow a Kroupa initial mass function weighted by the triple fraction; (d) inner binary orbital periods, eccentricities, and mass ratios mirror those of isolated binaries, including a pronounced twin excess (mass ratios greater than 0.95) out to separations of 1000+ au, suggesting a common formation pathway; (e) tertiary mass ratios follow a power-law distribution with slope −1.4; (f) tertiary orbits are consistent with a log-normal period distribution and thermal eccentricities, subject to dynamical stability. Informed by these observations, we develop a publicly available prescription for generating mock triple star populations. Finally, we estimate the catalog’s completeness and infer the intrinsic triple fraction, which rises steadily with primary mass: from 5% at ≲0.5Mto 35% at 2M. The public catalog provides a robust testbed for models of triple star formation and evolution. 
    more » « less
  5. Abstract The origin of the bright and hard X-ray emission flux among theγCas subgroup of B-emission line (Be) stars may be caused by gas accretion onto an orbiting white dwarf (WD) companion. Such Be+WD binaries are the predicted outcome of a second stage of mass transfer from a helium star mass donor to a rapidly rotating mass gainer star. The stripped donor stars become small and hot white dwarfs that are extremely faint compared to their Be star companions. Here we discuss model predictions about the physical and orbital properties of Be+WD binaries, and we show that current observational results onγCas systems are consistent with the expected large binary frequency, companion faintness and small mass, and relatively high mass range of the Be star hosts. We determine that the companions are probably not stripped helium stars (hot subdwarf sdO stars), because these are bright enough to detect in ultraviolet spectroscopy, yet their spectroscopic signatures are not observed in studies ofγCas binaries. Interferometry of relatively nearby systems provides the means to detect very faint companions including hot subdwarf and cooler main-sequence stars. Preliminary observations of fiveγCas binaries with the CHARA Array interferometer show no evidence of the companion flux, leaving white dwarfs as the only viable candidates for the companions. 
    more » « less