skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Air and soil temperature data from the Reference Stand network at the Andrews Experimental Forest, 1971 to present
The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients.  more » « less
Award ID(s):
2025755
PAR ID:
10647966
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less
  2. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less
  3. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less
  4. A three-level hydro-climatological network for data monitoring was established in 1994. The networks at each level are nested to form a coordinated program of data acquisition and measurement. A future vision of linking the benchmark meteorological stations with regional weather stations to expand the future scope of studies was also considered in designing this network. The first-level in this top-down approach consists of Benchmark Meteorological Stations (BMS) and Benchmark Stream Stations. The BMS are designed to represent the environment across the Andrews. These stations are intended to provide complete, long-term, high temporal resolution, meso-scale hydroclimatological data. The location of the BMS network is based on factors such as elevation, aspect, vegetation gradients, and accessibility. Collected meteorological parameters are generally standardized across the BMS as well as methods and instrumentation. Secondary Meteorological Stations also follow standardized methods and serve similar purposes but are somewhat limited in meteorological parameters collected. The Primary Meteorological Station (PRIMET), Central Meteorological Station (CENMET), Upper Lookout Meteorological Station (UPLMET), and Vanilla Leaf Meteorological Station (VANMET) are the four Benchmark Stations, Climatic Station at Watershed 2 (CS2MET) and the Hi-15 Meteorological Station (H15MET) are Secondary Stations. Watershed 7 Meteorological Station (WS7MET) was instrumented in 2006 and serves as an additional Secondary Station. In 2024, entities/measurement parameters (precipitation, wind, solar, soil, and snow) from MS001 database were partitioned out into separate databases. 
    more » « less
  5. A three-level hydro-climatological network for data monitoring was established in 1994. The networks at each level are nested to form a coordinated program of data acquisition and measurement. A future vision of linking the benchmark meteorological stations with regional weather stations to expand the future scope of studies was also considered in designing this network. The first-level in this top-down approach consists of Benchmark Meteorological Stations (BMS) and Benchmark Stream Stations. The BMS are designed to represent the environment across the Andrews. These stations are intended to provide complete, long-term, high temporal resolution, meso-scale hydroclimatological data. The location of the BMS network is based on factors such as elevation, aspect, vegetation gradients, and accessibility. Collected meteorological parameters are generally standardized across the BMS as well as methods and instrumentation. Secondary Meteorological Stations also follow standardized methods and serve similar purposes but are somewhat limited in meteorological parameters collected. The Primary Meteorological Station (PRIMET), Central Meteorological Station (CENMET), Upper Lookout Meteorological Station (UPLMET), and Vanilla Leaf Meteorological Station (VANMET) are the four Benchmark Stations, Climatic Station at Watershed 2 (CS2MET) and the Hi-15 Meteorological Station (H15MET) are Secondary Stations. These soil parameters were previously part of database code MS001, but were separated out into their own database in 2024. 
    more » « less