skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 11, 2026

Title: Concurrent PIM and Load/Store Servicing in PIM-Enabled Memory
Award ID(s):
1900803
PAR ID:
10648056
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
320 to 334
Format(s):
Medium: X
Location:
2025 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2025), Ghent, Belgium
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Graph application workloads are dominated by random memory accesses with poor locality. To tackle the irregular and sparse nature of computation, ReRAM-based Processing-in-Memory (PIM) architectures have been proposed recently. Most of these ReRAM architecture designs have focused on mapping graph computations into a set of multiply-and-accumulate (MAC) operations. ReRAMs also offer a key advantage in reducing memory latency between cores and memory by allowing for processing-in-memory (PIM). However, when implemented on a ReRAM-based manycore architecture, graph applications still pose two key challenges – significant storage requirements (particularly due to wasted zero cell storage), and significant amount of on-chip traffic. To tackle these two challenges, in this paper we propose the design of a 3D NoC-enabled ReRAM-based manycore architecture. Our proposed architecture incorporates a novel crossbar-aware node reordering to reduce ReRAM storage requirements. Secondly, its 3D NoC-enabled design reduces on-chip communication latency. Our architecture outperforms the state-of-the-art in ReRAM-based graph acceleration by up to 5x in performance while consuming up to 10.3x less energy for a range of graph inputs and workloads. 
    more » « less
  3. null (Ed.)