Abstract Lake surface temperature extremes have shifted over recent decades, leading to significant ecological and economic impacts. Here, we employed a hydrodynamic-ice model, driven by climate data, to reconstruct over 80 years of lake surface temperature data across the world’s largest freshwater bodies. We analyzed lake surface temperature extremes by examining changes in the 10th and 90th percentiles of the detrended lake surface temperature distribution, alongside heatwaves and cold-spells. Our findings reveal a 20–60% increase in the 10 and 90 percentiles detrended lake surface temperature in the last 50 years relative to the first 30 years. Heatwave and cold-spell intensities, measured via annual degree days, showed strong coherence with the Arctic Oscillation (period: 2.5 years), Southern Oscillation Index (4 years), and Pacific Decadal Oscillation (6.5 years), indicating significant links between lake surface temperature extremes and both interannual and decadal climate teleconnections. Notably, heatwave and cold-spell intensities for all lakes surged by over 100% after 1996 or 1976, aligning with the strongest El-Niño and a major shift in the Pacific Decadal Oscillation, respectively, marking potential regional climate tipping points. This emphasizes the long-lasting impacts of climate change on large lake thermodynamics, which cascade through larger ecological and regional climate systems.
more »
« less
This content will become publicly available on July 28, 2026
The Spatiotemporal Dynamics of Heatwaves and Cold‐Spells in Earth's Largest Freshwater Systems
Abstract Extreme water temperatures impact the ecological and economic value of freshwater systems. They disrupt fisheries habitat, trigger harmful algal blooms, and stress coastal infrastructure. This study examines the spatiotemporal patterns of heatwaves and cold‐spells in the Great Lakes using 82 years of simulated surface temperature data. Significant increasing trends in heatwave duration were observed in Lake Superior and Lake Michigan‐Huron, while cold‐spell duration increased on all lakes except Ontario. Temperature anomalies during these events varied from the climatological mean by as much as ±10C, but did not change significantly over time. Analysis revealed substantial spatial variability in heatwaves and cold‐spells, both within and across lakes, with differences driven by air temperature and ice cover anomalies as well as associated climate teleconnections (i.e., the East Pacific/North Pacific and Atlantic Multidecadal Oscillation). These findings highlight the importance of both climatic and lake processes in shaping extreme temperature events.
more »
« less
- PAR ID:
- 10648159
- Publisher / Repository:
- AGU Advancing Earth and Space Sciences
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 14
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lake heatwaves (extreme hot water events) can substantially disrupt aquatic ecosystems. Although surface heatwaves are well studied, their vertical structures within lakes remain largely unexplored. Here we analyse the characteristics of subsurface lake heatwaves (extreme hot events occurring below the surface) using a spatiotemporal modelling framework. Our findings reveal that subsurface heatwaves are frequent, often longer lasting but less intense than surface events. Deep-water heatwaves (bottom heatwaves) have increased in frequency (7.2 days decade−1), duration (2.1 days decade−1) and intensity (0.2 °C days decade−1) over the past 40 years. Moreover, vertically compounding heatwaves, where extreme heat occurs simultaneously at the surface and bottom, have risen by 3.3 days decade−1. By the end of the century, changes in heatwave patterns, particularly under high emissions, are projected to intensify. These findings highlight the need for subsurface monitoring to fully understand and predict the ecological impacts of lake heatwaves.more » « less
-
Lowest events in Lake Titicaca’s water level (LTWL) significantly impact local ecosystems and the drinking water supply in Peru and Bolivia. However, the hydroclimatic mechanisms driving extreme lake-level lowstands remain poorly understood. To investigate these low lake-level events, we analyzed detrended monthly LTWL anomalies, sea surface temperature (SST) datasets covering the period 1921–2023. ERA5 reanalysis covers the period 1940–2023. A multiple linear regression model was developed to compute detrended LTWL anomalies, excluding multidecadal and residual components. Interdecadal Pacific Oscillation (IPO) and Pacific Decadal Oscillation (PDO) indices were also analyzed for the same period. Results indicate that 25% of all LTWL minima events have a short duration of <5 months, while the remaining 75% of all events have a long duration of more than 9 months, respectively. All long-lived LTWL minima events are associated with reduced moisture flow from the Amazon basin toward Lake Titicaca, but the large-scale forcing varies with the phase change of the decadal component in the 11–15 years band of the PDO (PDO11–15 years). Under warm PDO11–15 yearsphases, LTWL minima are driven by an enhanced South American low-level jet (SALLJ) caused by warm SST anomalies over the eastern Pacific Ocean. Warm SST anomalies over tropical North Atlantic and central Pacific cold events, which reinforce the cold PDO11–15 yearsphases, driving long-lived LTWL minima through the reduction of SALLJ. Conversely, long-lived LTWL minima events under neutral PDO11–15 yearsphases are caused by westerly flow anomalies confined to the Peruvian Altiplano. Therefore, PDO and IPO do not drive long-lived LTWL minima events because their relationship does not remain consistent over time. In conclusion, long-lived LTWL minima events exhibit a regional nature and are not driven by the PDO or IPO, as LTWL shows no consistent relationship with these decadal SST modes over time.more » « less
-
Abstract Extreme cold events over North America such as the February 2021 cold wave have been suggested to be linked to stratospheric polar vortex stretching. However, it is not resolved how robustly and on which timescales the stratosphere contributes to the surface anomalies. Here we introduce a simple measure of stratospheric wave activity for reanalyses and model outputs. In contrast to the well-known surface influences of sudden stratospheric warmings (SSWs) that increase the intraseasonal persistence of weather regimes, we show that extreme stratospheric wave events are accompanied by intraseasonal fluctuations between warm and cold spells over North America in observations and climate models. Particularly, strong stratospheric wave events are followed by an increased risk of cold extremes over North America 5–25 days later. Idealized simulations in an atmospheric model with a well-resolved stratosphere corroborate that strong stratospheric wave activity precedes North American cold spells through vertical wave coupling. These findings potentially benefit the predictability of high-impact winter cold extremes over North America.more » « less
-
Abstract Extreme weather events have devastating impacts on human health, economic activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal prediction on time scales of several weeks for many extreme events. Here we provide an overview of subseasonal predictability for case studies of some of the most prominent extreme events across the globe using the ECMWF S2S prediction system: heatwaves, cold spells, heavy precipitation events, and tropical and extratropical cyclones. The considered heatwaves exhibit predictability on time scales of 3–4 weeks, while this time scale is 2–3 weeks for cold spells. Precipitation extremes are the least predictable among the considered case studies. Tropical cyclones, on the other hand, can exhibit probabilistic predictability on time scales of up to 3 weeks, which in the presented cases was aided by remote precursors such as the Madden–Julian oscillation. For extratropical cyclones, lead times are found to be shorter. These case studies clearly illustrate the potential for event-dependent advance warnings for a wide range of extreme events. The subseasonal predictability of extreme events demonstrated here allows for an extension of warning horizons, provides advance information to impact modelers, and informs communities and stakeholders affected by the impacts of extreme weather events.more » « less
An official website of the United States government
