skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2330317

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background Deciduous forests in eastern North America experienced a widespread and intense spongy moth (Lymantria dispar) infestation in 2021. This study quantified the impact of this spongy moth infestation on carbon (C) cycle in forests across the Great Lakes region in Canada, utilizing high-resolution (10 × 10 m2) Sentinel-2 satellite remote sensing images and eddy covariance (EC) flux data. Study results showed a significant reduction in leaf area index (LAI) and gross primary productivity (GPP) values in deciduous and mixed forests in the region in 2021. Results Remote sensing derived, growing season mean LAI values of deciduous (mixed) forests were 3.66 (3.18), 2.74 (2.64), and 3.53 (2.94) m2 m−2 in 2020, 2021 and 2022, respectively, indicating about 24 (14)% reduction in LAI, as compared to pre- and post-infestation years. Similarly, growing season GPP values in deciduous (mixed) forests were 1338 (1208), 868 (932), and 1367 (1175) g C m−2, respectively in 2020, 2021 and 2022, showing about 35 (22)% reduction in GPP in 2021 as compared to pre- and post-infestation years. This infestation induced reduction in GPP of deciduous and mixed forests, when upscaled to whole study area (178,000 km2), resulted in 21.1 (21.4) Mt of C loss as compared to 2020 (2022), respectively. It shows the large scale of C losses caused by this infestation in Canadian Great Lakes region. Conclusions The methods developed in this study offer valuable tools to assess and quantify natural disturbance impacts on the regional C balance of forest ecosystems by integrating field observations, high-resolution remote sensing data and models. Study results will also help in developing sustainable forest management practices to achieve net-zero C emission goals through nature-based climate change solutions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Comprehensive assessments of hydrological components are crucial for enhancing operational water supply simulations. However, hydrological models are often evaluated based on their surface flow simulations, while the validation of subsurface and groundwater components tends to be overlooked or not well documented. In this study, we evaluated the outputs of two hydrological models, the Large Basin Runoff Model (LBRM) and the Weather Research and Forecasting – Hydrological modeling extension package (WRF-Hydro), for potential implementation in operational water balance forecasting in the Great Lakes region. We examined the simulated hydrological variables including surface (e.g. snow water equivalent, evapotranspiration, and streamflow), subsurface (e.g. soil moisture at different layers), and groundwater components with observed or reference data from ground-based stations and remotely sensed images. The findings of this study provide valuable insights into the capabilities and limitations of each model. These findings contribute to more informed water management strategies for the Great Lakes region. 
    more » « less
    Free, publicly-accessible full text available August 17, 2025
  3. Temperate deciduous forests are an important contributor to the global carbon (C) sink. However, changes in environmental conditions and natural disturbances such as insect infestations can impact carbon sequestration capabilities of these forests. While, insect infestations are expected to increase in warmer future climates, there is a lack of knowledge on the quantitative impact of these natural disturbances on the carbon balance of temperate deciduous forests. In 2021, a record-breaking defoliation, caused by the spongy moth (Lymantria dispar dispar (LDD), formerly knows as the gypsy moth) occurred in eastern North America. In this study, we assess the impact of this spongy moth defoliation on carbon uptake in a mature oak-dominated temperate forest in the Great Lakes region in Canada, using eddy covariance flux data from 2012 to 2022. Study results showed that the forest was a large C sink with mean annual net ecosystem productivity (NEP) of 207 ± 77 g C m–2 yr−1 from 2012 to 2022, excluding 2021, which experienced the infestation. Over this period mean annual gross ecosystem productivity (GEP) was 1,398 ± 137 g C m–2 yr−1, while ecosystem respiration (RE) was 1,209 ± 139 g C m–2 yr−1. However, in 2021 due to defoliation in the early growing season, annual GEP of the forest declined to 959 g C m–2 yr−1, while annual RE increased to 1,345 g C m–2 yr−1 causing the forest to become a large source of C with annual NEP of -351 g C m–2 yr−1. The forest showed a rapid recovery from this major disturbance event, with annual GEP, RE, and NEP values of 1,671, 1,287, and 298 g C m–2 yr−1, respectively in 2022 indicating that the forest was once again a large C sink. This study demonstrates that major transient natural disturbances under changing climate can have a significant impact on forest C dynamics. The extent to which North American temperate forests will remain a major C sink will depend on the severity and intensity of these disturbance events and the rate of recovery of forests following disturbances. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025