Abstract Although corticosterone (Cort) has been the predominant metric used to assess acute stress in birds, it does not always accurately reflect how an animal copes with a stressor. Downstream measurements may be more reliable. In the current study, we tested the hypothesis that acute increases in DNA damage could be used to assess stressor exposure. Studies have shown DNA damage increases in response to stress‐related hormones in vitro; however, this has not yet been thoroughly applied in wild animals. We exposed house sparrows (Passer domesticus) to a 30‐ or 120‐min restraint stressor and took blood samples at 0, 30, 60, and 120 min to measure Cort, DNA damage, and uric acid. Both treatments increased DNA damage and Cort, and decreased uric acid. It thus appears that DNA damage can reflect acute stressor exposure. To improve the usability of DNA damage as a metric for stress, we also tested the impacts of sample storage on DNA damage. Leaving red blood cells on ice for up to 24 hr, only slightly influenced DNA damage. Freezing blood samples for 1–4 weeks substantially increased DNA damage. These findings emphasize the importance of reducing variation between samples by assaying them together whenever possible. Overall, these results indicate that assessing DNA damage is a valid method of assessing acute stressor exposure that is suitable for both laboratory‐ and field‐based studies; however, additional research is needed on the molecular dynamics of nucleated red blood cells, including whether and how their DNA is repaired.
more »
« less
This content will become publicly available on March 24, 2026
Corticosterone and Mitochondrial Efficiency Are Associated With Changes in DNA Oxidative Damage During an Acute Stress Response in Leach's Storm‐Petrels ( Hydrobates leucorhous )
ABSTRACT The ability of organisms to effectively respond to challenges is critical for survival. We investigated how an acute stressor affected corticosterone, mitochondrial function, and DNA oxidative damage in a wild population of Leach's storm‐petrels (Hydrobates leucorhous). We conducted a standardized 20‐min handling procedure on storm‐petrel chicks and collected baseline and post‐handling blood samples. We measured plasma corticosterone and red blood cell DNA oxidative damage levels through the detection of a mutated DNA base 8‐Hydroxy‐2'‐deoxyguanosine (8‐OHdG). In addition, we quantified six measures of mitochondrial aerobic metabolism from red blood cells. Overall, the handling stressor increased plasma corticosterone levels and decreased mitochondrial efficiency to produce ATP. Although the increase in corticosterone was inversely related to the change in DNA oxidative damage, the decrease in mitochondrial efficiency was positively correlated with the change in DNA oxidative damage. Thus, over an acute stress response, individuals who had the largest increase in corticosterone also had the least amount of oxidative damage. In addition, individuals who prioritized ATP production during the acute stress also showed higher levels of oxidative damage. This work highlights the complex pathways by which corticosterone and mitochondrial efficiency affect oxidative damage during acute stress, providing new insights into the trade‐offs underlying physiological responses in wild animals.
more »
« less
- PAR ID:
- 10648282
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Experimental Zoology Part A: Ecological and Integrative Physiology
- ISSN:
- 2471-5638
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It is frequently hypothesized that animals employ a generalized “stress response,” largely mediated by glucocorticoid (GC) hormones, such as corticosterone, to combat challenging environmental conditions. Under this hypothesis, diverse stressors are predicted to have concordant effects across biological levels of an organism. We tested the generalized stress response hypothesis in two complementary experiments with juvenile and adult male Eastern fence lizards (Sceloporus undulatus). In both experiments, animals were exposed to diverse, ecologically-relevant, acute stressors (high temperature or red imported fire ants, Solenopsis invicta) and we examined their responses at three biological levels: behavioral; physiological (endocrine [plasma corticosterone and blood glucose concentrations] and innate immunity [complement and natural antibodies]); and cellular responses (gene expression of a panel of five heat-shock proteins in blood and liver) at 30 or 90 min post stress initiation. In both experiments, we observed large differences in the cellular response to the two stressors, which contrasts the similar behavioral and endocrine responses. In the adult experiment for which we had innate immune data, the stressors affected immune function independently, and they were correlated with CORT in opposing directions. Taken together, these results challenge the concept of a generalized stress response. Rather, the stress response was context specific, especially at the cellular level. Such context-specificity might explain why attempts to link GC hormones with life history and fitness have proved difficult. Our results emphasize the need for indicators at multiple biological levels and whole-organism examinations of stress.more » « less
-
Mitochondrial damage occurs in human trabecular meshwork (HTM) cells as a result of normal aging and in open angle glaucoma. Using an HTM cell model, we quantified mitochondrial function and ATP generation rates after dexamethasone (Dex) and TGF-β2 treatments, frequently used as in vitro models of glaucoma. Primary HTM cells were assayed for metabolic function using a Seahorse XFp Analyzer. We additionally assessed the mitochondrial copy number and the expression of transcripts associated with mitochondrial biogenesis and oxidative stress regulation. Cells treated with Dex, but not TGF-β2, exhibited a significant decrease in total ATP production and ATP from oxidative phosphorylation relative to that of the control. Dex treatment also resulted in significant decreases in maximal respiration, ATP-linked O2 consumption, and non-mitochondrial O2 consumption. We did not observe significant changes in the level of mitochondrial genomes or mRNA transcripts of genes involved in mitochondrial biogenesis and oxidative stress regulation. Decreased mitochondrial performance and ATP production are consistent with the results of prior studies identifying the effects of Dex on multiple cell types, including HTM cells. Our results are also consistent with in vivo evidence of mitochondrial damage in open-angle glaucoma. Overall, these results demonstrate a decrease in mitochondrial performance in Dex-induced glaucomatous models in vitro, meriting further investigation.more » « less
-
Abstract Decades of research into stress responses have highlighted large variation among individuals, populations, and species, and the sources of this variation have been a center of research across disciplines. The most common measure of the vertebrate stress response is glucocorticoids. However, the predictive power of glucocorticoid responses to fitness is surprisingly low. This is partly because the hormone levels rapidly change in response to stressor exposure and elevated levels at one time point can indicate either that glucocorticoids are helping the organism cope with the stressor or that dysregulation of hormone release is harming the organism. Meaning, the fitness consequences of the stressor depends on how efficient the stress responses are at negating the harmful impacts of stressors to cells and tissues. To encompass the idea of the efficiency of stress responses and to integrate cellular and organismal stress responses, a new theoretical model called the Damage-Fitness Model was developed. The model focuses on the downstream effects of stress responses and predicts that the accumulation of damage in cells and tissues (e.g., persistent damage to proteins, lipids, and DNA) negatively impacts fitness components. In this mini-review, we examine evidence supporting the Damage-Fitness Model and explore new directions forward.more » « less
-
null (Ed.)Canids are a morphological and physiological diverse group of animals, with the most diversity found within one species, the domestic dog. Underlying observed morphological differences, there must also be differences at other levels of organization that could lead to elucidating aging rates and life span disparities between wild and domestic canids. Furthermore, small-breed dogs live significantly longer lives than large-breed dogs, while having higher mass-specific metabolic rates and faster growth rates. At the cellular level, a clear mechanism underlying whole animal traits has not been fully elucidated, although oxidative stress has been implicated as a potential culprit of the disparate life spans of domestic dogs. We used plasma and red blood cells from known aged domestic dogs and wild canids, and measured several oxidative stress variables: total antioxidant capacity (TAC), lipid damage, and enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase (GPx). We used phylogenetically informed general linear mixed models and nonphylogenetically corrected linear regression analysis. We found that lipid damage increases with age in domestic dogs, whereas TAC increases with age and TAC and GPx activity increases as a function of age/maximum life span in wild canids, which may partly explain longer potential life spans in wolves. As body mass increases, TAC and GPx activity increase in wild canids, but not domestic dogs, highlighting that artificial selection may have decreased antioxidant capacity in domestic dogs. We found that small-breed dogs have significantly higher circulating lipid damage compared with large-breed dogs, concomitant to their high mass-specific metabolism and higher growth rates, but in opposition to their long life spans.more » « less
An official website of the United States government
