skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Geometrizing the anomaly
Recently a manifestly gauge invariant formalism for calculating amplitudes in quantum electrodynamics was outlined in which the field strength, rather than the gauge potential, is used as the propagating field. To demonstrate the utility of this formalism we calculate the axial and gauge anomalies explicitly in theories with both electrically and magnetically charged particles. Usually the gauge anomaly is identified as an amplitude that (in certain theories) fails to be gauge invariant, so it seems particularly enlightening to understand it in a manifestly gauge invariant formalism. We find that the three photon amplitude is still anomalous in these same theories because it depends explicitly upon the choice of the Stokes surface needed to couple the field strength to sources, so the gauge anomaly arises from geometric considerations.  more » « less
Award ID(s):
2210067
PAR ID:
10648328
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature Link
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
8
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study effective field theories (EFTs) enjoying (maximal) biform symmetries. These are defined by the presence of a conserved (electric) current that has the symmetries of a Young tableau with two columns of equal length. When these theories also have a topological (magnetic) biform current, its conservation law is anomalous. We go on to show that this mixed anomaly uniquely fixes the two-point function between the electric and magnetic currents. We then perform a Källén-Lehmann spectral decomposition of the current-current correlator, proving that there is a massless mode in the spectrum, whose masslessness is protected by the anomaly. Furthermore, the anomaly gives rise to a universal form of the EFT whose most relevant term — which resembles the linear Einstein action — dominates the infrared physics. As applications of this general formalism, we study the theories of a Galileon superfluid and linearized gravity. Thus, one can view the masslessness of the graviton as being protected by the anomalous biform symmetries. The associated EFT provides an organizing principle for gravity at low energies in terms of physical symmetries, and allows interactions consistent with linearized diffeomorphism invariance. These theories are not ultraviolet-complete — the relevant symmetries can be viewed as emergent — nor do they include the nonlinearities necessary to make them fully diffeomorphism invariant, so there is no contradiction with the expectation that quantum gravity cannot have any global symmetries. 
    more » « less
  2. This paper addresses the following question: given a topological quantum field theory on [Formula: see text] built from an action functional, when is it possible to globalize the theory so that it makes sense on an arbitrary smooth oriented n-manifold? We study a broad class of topological field theories — those of AKSZ type — and obtain an explicit condition for the vanishing of the framing anomaly, i.e. the obstruction to performing this globalization procedure. We also interpret our results in terms of identifying the observables as an algebra over the framed little n-disks operad. Our analysis uses the BV formalism for perturbative field theory and the notion of factorization homology. 
    more » « less
  3. A<sc>bstract</sc> We construct a novel flux tube entanglement entropy (FTE2), defined as the excess entanglement entropy relative to the vacuum of a region of color flux stretching between a heavy quark-anti-quark pair in pure gauge Yang-Mills theory. We show that FTE2can be expressed in terms of correlators of Polyakov loops, is manifestly gauge-invariant, and therefore free of the ambiguities in computations of the entanglement entropy in gauge theories related to the choice of the center algebra. Employing the replica trick, we compute FTE2for SU(2) Yang-Mills theory in (2+1)D and demonstrate that it is finite in the continuum limit. We explore the properties of FTE2for a half-slab geometry, which allows us to vary the width and location of the slab, and the extent to which the slab cross-cuts the color flux tube. Following the intuition provided by computations of FTE2in (1+1)D, and in a thin string model, we examine the extent to which our FTE2results can be interpreted as the sum of an internal color entropy and a vibrational entropy corresponding to the transverse excitations of the string. 
    more » « less
  4. We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible0 0 -form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit symmetry fractionalization: each anyon can carry a “fractional charge” under the coset non-invertible symmetry given by a gauge invariant superposition of fractional quantum numbers. We present various examples using field theories and quantum double lattice models, such as fractional quantum Hall systems with charge conjugation symmetry gauged and finite group gauge theory from gauging a non-normal subgroup. They include symmetry enrichedS_3 S 3 andO(2) O ( 2 ) gauge theories. We show that such systems have a fractionalized continuous non-invertible coset symmetry and a well-defined electric Hall conductance. The coset symmetry enforces a gapless edge state if the boundary preserves the continuous non-invertible symmetry. We propose a general approach for constructing coset symmetry defects using a “sandwich” construction: non-invertible symmetry defects can generally be constructed from an invertible defect sandwiched by condensation defects. The anomaly free condition for finite coset symmetry is also identified. 
    more » « less
  5. The effective potential has been previously calculated through three-loop order, in Landau gauge, for a general renormalizable theory using dimensional regularization. However, dimensional regularization is not appropriate for softly broken supersymmetric gauge theories, because it explicitly violates supersymmetry. In this paper, I obtain the three-loop effective potential using a supersymmetric regulator based on dimensional reduction. Checks follow from the vanishing of the effective potential in examples with supersymmetric vacua, and from renormalization scale invariance in examples for which supersymmetry is broken, either spontaneously or explicitly by soft terms. As byproducts, I obtain the three-loop Landau gauge anomalous dimension for the scalar component of a chiral supermultiplet, and the beta function for the field-independent vacuum energy. 
    more » « less