Persistent Homology (PH) is a method of Topological Data Analysis that analyzes the topological structure of data to help data scientists infer relationships in the data to assist in informed decision- making. A significant component in the computation of PH is the construction and use of a complex that represents the topological structure of the data. Some complex types are fast to construct but space inefficient whereas others are costly to construct and space efficient. Unfortunately, existing complex types are not both fast to construct and compact. This paper works to increase the scope of PH to support the computation of low dimensional homologies (H0 –H10 ) in high-dimension, big data. In particular, this paper exploits the desirable properties of the Vietoris–Rips Complex (VR-Complex) and the Delaunay Complex in order to construct a sparsified complex. The VR-Complex uses a distance matrix to quickly generate a complex up to the desired homology dimension. In contrast, the Delaunay Complex works at the dimensionality of the data to generate a sparsified complex. While construction of the VR-Complex is fast, its size grows exponentially by the size and dimension of the data set; in contrast, the Delaunay complex is significantly smaller for any given data dimension. However, its construction requires the computation of a Delaunay Triangulation that has high computational complexity. As a result, it is difficult to construct a Delaunay Complex for data in dimensions d > 6 that contains more than a few hundred points. The techniques in this paper enable the computation of topological preserving sparsification of k-Simplices (where k ≪ d) to quickly generate a reduced sparsified complex sufficient to compute homologies up to k-subspace, irrespective of the data dimensionality d.
more »
« less
This content will become publicly available on October 21, 2026
Cooperative enhancement of redox catalysis in divanadium complexes binucleated by 1,8-naphthyridine-2,7-dicarboxylate
We report discrete divanadium complexes of 1,8-naphthyridine-2,7-dicarboxylate, characterized by SCXRD, DFT modelling, and magnetometry. One complex shows significantly greater activity in the aerobic cleavage of diols and a lignin model compound than its monometallic analogs. Mechanistic experiments and a substrate-bound complex provide insight into cooperativity in vanadium redox catalysis.
more »
« less
- Award ID(s):
- 2337696
- PAR ID:
- 10648342
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 54
- Issue:
- 41
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 15400 to 15405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Both the Mandelbrot set and filled Julia sets are subsets in the complex plane derived by studying iterations of complex polynomials. We develop a matricial framework to establish an alternate form of iteration by complex polynomials using a sequence of affine transformations. Using this framework, we are able to check membership in a filled Julia set and the Mandelbrot set by studying boundedness of sequences of matrices. Specifically, we show that a complex number belongs to the Mandelbrot set if and only if a particular sequence of matrices is bounded in the operator norm, and a complex number belongs to a filled Julia set if and only if a particular sequence of matrices is bounded in operator norm.more » « less
-
Weitz, David (Ed.)We report a neutron spin echo (NSE) study of the nanoscale dynamics of the cell–cell adhesion cadherin–catenin complex bound to vinculin. Our measurements and theoretical physics analyses of the NSE data reveal that the dynamics of full-length α-catenin, β-catenin, and vinculin residing in the cadherin–catenin–vinculin complex become activated, involving nanoscale motions in this complex. The cadherin–catenin complex is the central component of the cell–cell adherens junction (AJ) and is fundamental to embryogenesis, tissue wound healing, neuronal plasticity, cancer metastasis, and cardiovascular health and disease. A highly dynamic cadherin–catenin–vinculin complex provides the molecular dynamics basis for the flexibility and elasticity that are necessary for the AJs to function as force transducers. Our theoretical physics analysis provides a way to elucidate these driving nanoscale motions within the complex without requiring large-scale numerical simulations, providing insights not accessible by other techniques. We propose a three-way “motorman” entropic spring model for the dynamic cadherin–catenin–vinculin complex, which allows the complex to function as a flexible and elastic force transducer.more » « less
-
We derive conditions under which the reconstruction of a target space is topologically correct via the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data. We provide two novel theoretical results. First, we describe sufficient conditions under which any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set is contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we demonstrate the homotopy equivalence of a positive μ-reach set and its offsets. Applying these results to the restricted Čech complex and using the interleaving relations with the Čech complex (or the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy equivalent to the Čech complex (or the Vietoris-Rips complex), in terms of the μ-reach. Our results sharpen existing results.more » « less
-
The cadherin–catenin adhesion complex is the central component of the cell–cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•β-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and β-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of β-catenin forms a flexible “tongue” that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin–catenin adhesion complex in mechanotransduction.more » « less
An official website of the United States government
