skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Science teachers’ implementation of science and engineering practices in different instructional settings
This article explores science teachers’ implementation of science and engineering practices (SEPs) under different instructional settings. We compared the number of SEPs science teachers reported using in face-to-face instruction (traditional), online-only instruction (virtual), or HyFlex instruction (synchronously online and in-person) from August 2020 to May 2021. Records and artefacts of the teachers’ instructional practices were collected over three one-week periods. Interview data were used to validate teachers’ instructional activities, the context of SEP implementation, and their challenges when navigating the different instructional settings. Through a lens of consequential transition perspective, our findings revealed that science teachers implemented significantly more SEPs in a HyFlex or traditional setting than in a virtual setting. The results also showed that regardless of the instructional setting, elementary and secondary teachers generally implemented few investigating SEPs. Among elementary teachers, developing explanations and solutions were the most frequently used SEPs across all instructional settings. Among secondary teachers, the developing explanations and solutions SEPs and evaluating SEPs were prevalent but varied across the different instructional settings. Our findings suggest that science teachers need to continue to build their knowledge and practice of the SEPs, and have different supports to facilitate their SEP implementation in different instructional environments.  more » « less
Award ID(s):
1908431
PAR ID:
10648371
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
International Journal of Science Education
Volume:
47
Issue:
13
ISSN:
0950-0693
Page Range / eLocation ID:
1611 to 1632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study explored secondary science teachers’ attending and interpretation of three science and engineering practices (SEPs) occurring in a classroom setting. This data were further examined to see if teaching experience and disciplinary area influenced the secondary science teachers attending and interpretation of the SEPs. The data collection process involved having teachers talk about the science instruction they viewed in short videos. The videos highlighted three SEPs: developing and using models, analyzing and interpreting data, and engaging in argument from evidence (see NGSS Lead States, 2013). A mixed-method analysis was used to examine the responses of teachers. From this analysis, there were four important conclusions. First, most science teachers struggled to provide full descriptions of the SEPs in the videos. Second, being able to describe an SEP, at least partially, often coincided with a higher level of interpretation of the SEP. Third, the disciplinary area of the teachers did not pose a barrier in their ability to point out and talk about an SEP. Fourth, preliminary evidence suggested that new science teachers had more sophisticated discussions about the SEPs than their experienced science teacher counterparts. This study found evidence that science teachers are still building their knowledge of the SEPs, attending and interpretation are connected, and that attending and noticing of the SEPs may not be content specific. These findings have implications for the ongoing learning of teachers. 
    more » « less
  2. Teachers’ integration of the Next Generation Science Standards and corresponding Science and Engineering Practices (SEPs) illustrate current science education reform in the United States. Effective teacher professional development (PD) on SEPs is essential for reform success. In this study, we evaluated the Nebraska STEM Education Conference, a PD program for middle school, high school, and first- and second-year post-secondary STEM teachers. This SEP-oriented PD program focused predominantly on the SEPs ‘developing and using models’ and ‘using mathematics and computational thinking.’ An electronic survey was used to measure participants’ (n = 45) prior integration of SEPs, influential factors and barriers to using SEPs, and changes to interest and confidence in using SEPs as a result of attending the PD program. Our results showed that teachers had limited prior use of SEPs in their teaching. Student interest and learning outcomes were the factors found to be most influential to teachers’ use of SEPs, while limited knowledge, confidence, and resources were the most commonly identified barriers. As a result of attending the PD program, participants significantly improved their confidence and interest to incorporate SEPs. We recommend continued SEP-oriented PD to foster successful NGSS integration and to advance reforms in science education. 
    more » « less
  3. Science learning is an important part of the K-12 educational experience, as well as in the lives of students. This study considered students’ science learning as they engaged in the instruction of scientific issues with social relevance. With classroom environments radically changing during the COVID-19 pandemic, our study adapted to teachers and students as they were forced to change from more traditional, in-person instructional settings to virtual, online instruction settings. In the present study, we considered science learning during a scaffold-facilitated process, where secondary students evaluated the connections between lines of scientific evidence and alternative explanations about fossil fuels and climate change and gauged the plausibility of each explanation. Our investigation focused on the relations between students’ levels of evaluations, shifts in plausibility judgments, and knowledge gains, and examined whether there were differences in these relations between in-person classroom settings and virtual classroom settings. The results revealed that the indirect relational pathway linking higher levels of evaluation, plausibility shifts toward a more scientific stance, and greater knowledge gains was meaningful and more robust than the direct relational pathway linking higher levels of evaluation to greater knowledge gains. The results also showed no meaningful difference between the two instructional settings, suggesting the potential adaptiveness and effectiveness of properly-designed, scaffolded science instruction. 
    more » « less
  4. In rural, geographically dispersed school districts, access to high-quality face-to-face professional development (PD) is challenging. Our study developed and compared the effectiveness of an online PD for middle-school science teachers working in remote, rural areas of Kansas with an evidence-based traditional face-to-face PD. Fifteen rural middle-school science teacher participants were randomly selected to participate in the online or traditional PD, then taught the Toward High School Biology curriculum to their 504 middle-school students. Findings aligned with our hypothesis that online PD is as effective as traditional in improving student content knowledge. Teachers’ instructional practices in using Next Generation Science Standards improved, as did their use of student-centered instruction and making science relevant to the lives of their students. 
    more » « less
  5. Abstract Knowing how science teachers develop their professional knowledge has been a challenge. One potential way to determine the professional knowledge of teachers is through videos. In the study described here, the authors recruited 60 elementary and secondary science teachers, showed them one of two 10‐min videos, and recorded and analyzed their comments when watching the videos. The coding focused on their noticing of student learning, teacher's teaching, types of teaching practices, and the use of interpretative frames. The noticing data were collected and analyzed to determine the differences between groups of teachers. The findings from the analysis indicated that most science teachers noticed the instruction of teachers rather than the learning of students, and these noticing events were often focused on general instructional practices as opposed to the science practices emphasized in theNext Generation Science Standards(National Research Council, 2013). The only difference between the teachers was in the area of evaluating the videos. Secondary science teachers and experienced elementary teachers were more likely to evaluate the videos than were novice elementary teachers. This may be a result of the knowledge base of the teachers. These results suggest a need for explicit reform‐based instruction and a revision of this research process. 
    more » « less