skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurement of soluble aerosol trace elements: inter-laboratory comparison of eight leaching protocols
Abstract. A range of leaching protocols have been used to measure the soluble fraction of aerosol trace elements worldwide, and therefore these measurements may not be directly comparable. This work presents the first large-scale international laboratory intercomparison study for aerosol trace element leaching protocols. Eight widely-used protocols are compared using 33 samples that were subdivided and distributed to all participants. Protocols used ultrapure water, ammonium acetate, or acetic acid (the so-called “Berger leach”) as leaching solutions, although none of the protocols were identical to any other. The ultrapure water leach resulted in significantly lower soluble fractions, when compared to the ammonium acetate leach or the Berger leach. For Al, Cu, Fe and Mn, the ammonium acetate leach resulted in significantly lower soluble fractions than those obtained with the Berger leach, suggesting that categorizing these two methods together as “strong leach” in global databases is potentially misleading. Among the ultrapure water leaching methods, major differences seemed related to specific protocol features rather than the use of a batch or a flow-through technique. Differences in trace element solubilization among leach solutions were apparent for aerosols with different sources or transport histories, and further studies of this type are recommended on aerosols from other regions. We encourage the development of “best practices” guidance on analytical protocols, data treatment and data validation in order to reduce the variability in soluble aerosol trace element data reported. These developments will improve understanding of the impact of atmospheric deposition on ocean ecosystems and climate.  more » « less
Award ID(s):
2513154
PAR ID:
10648520
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
18
Issue:
21
ISSN:
1867-8548
Page Range / eLocation ID:
6125 to 6141
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nicole Riemer (Ed.)
    Aerosol particles in the atmosphere have the ability to uptake water and form droplets. The droplets formed can interact with solar radiation (indirect effect of aerosols) and influence the net radiative forcing. However, the magnitude of change in radiative forcing due to the indirect effect of aerosols remains uncertain due to the high variance in aerosol composition and mixing states, both spatial and temporally. As such, there is a need to measure the water-uptake of different aerosol particle groups under controlled conditions to gain insight into the water-uptake of complex ambient systems. In this work, the water-uptake (hygroscopicity) of internally and externally mixed ammonium sulfate – organic binary mixtures were directly measured via three methods and compared to droplet growth prediction models. We found that subsaturated water-uptake of ammonium sulfate-organic mixtures agreed with their supersaturated hygroscopicity, and mixing state information was able to be retrieved at both humidity regimes. In addition, we found that solubility-adjusted models may not be able to capture the water-uptake of viscous particles, and for soluble organic aerosol particles, bulk solubility may not be comparable to their solubility in a droplet. This work highlights the importance of using multiple complementary water-uptake measurement instruments to get a clearer picture of mixed aerosol particle hygroscopicity, especially for increasingly complex systems. 
    more » « less
  2. Phthalates are the most prevalent plasticizers in poly(vinyl chloride) (PVC), the most commonly used polymer for drinking water distribution pipes. Though typically considered inert to the free chlorine necessary for drinking water disinfection, we found that certain commercially relevant phthalates leach from PVC and transform in the presence of free chlorine. The extent of aqueous phthalate leaching was alkyl chain length-dependent; the greatest leaching was observed for the most soluble 1-carbon chain phthalate, which was unaffected by free chlorine. In contrast, 2- and 4-carbon chain phthalates leached significantly less, and their concentrations decreased further in the presence of free chlorine. These observations were rationalized by experiments showing increased chlorine consumption with increasing phthalate alkyl chain length, indicative of structure-dependent chemical transformations of the parent phthalate with free chlorine. Using gas and liquid chromatography, high-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy, we identified 13 disinfection byproducts of diisobutyl phthalate, 2 of which were confirmed using reference materials. The presence of both chlorinated and hydroxylated transformation products suggests reactions with both free chlorine and chlorine-derived reactive intermediates. This study underscores the need for consideration of chemical structure in predicting phthalate reactivity and highlights potential exposure risks in drinking water infrastructure. 
    more » « less
  3. Abstract Atmospheric deposition is an important pathway for delivering micronutrient and pollutant trace elements (TEs) to the surface ocean. In the central Arctic, much of this supply takes place onto sea ice during winter, before eventual delivery to the ocean during summertime melt. However, the seasonality of aerosol TE loading, solubility, and deposition flux are poorly studied over the Arctic Ocean, due to the difficulties of wintertime sampling. As part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, aerosols collected during winter and spring (December–May) were analyzed for soluble, labile, and total TE concentrations. Despite low dust loading, mineral aerosol accounted for most of the variation in total Fe, Al, Ti, V, Mn, and Th concentrations. In contrast, soluble TE concentrations were more closely linked to non‐sea‐salt sulfate, and Fe solubility was significantly higher during Arctic winter (median = 6.5%) than spring (1.9%), suggesting an influence from Arctic haze. Beryllium‐7 data were used to calculate an average bulk deposition velocity of 613 ± 153 m d−1over most of the study period, which was applied to calculate seasonal deposition fluxes of total, labile, and soluble TEs to the central Arctic. Total TE fluxes (173 ± 145 nmol m−2 d−1for Fe) agreed within a factor of two or three with earlier summertime estimates, with generally higher wintertime concentrations offset by a lower deposition velocity. Cumulative seasonal deposition of total, labile, and soluble Fe to the central Arctic Ocean was calculated at 25 ± 21, 5 ± 3, and 2 ± 2 μmol m−2, respectively. 
    more » « less
  4. Atmospheric aerosols significantly offset positive radiative forcing due to their contributions as cloud condensation nuclei (CCN) and ice nucleating particles (INPs). The cloud-aerosol-precipitation interactions in the atmosphere are determined by physical and chemical properties of aerosol particles, which can undergo many cycles of droplet activation and subsequent drying before dry or wet deposition from the atmosphere. Secondary organic aerosol (SOA) is an abundant class of aerosol and has been previously shown to contribute to aerosol formed from cloud processing. Isoprene-derived secondary organic aerosol SOA (iSOA) is a particularly important class of aerosol involved in cloud processing. iSOA has both soluble and insoluble components, but there has been a measurement gap in characterizing the insoluble components, as most analyses have focused on soluble components. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, we analyze the insoluble components of SOA generated from the reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid at different ratios for different pH conditions) in an atmospheric chamber. We characterize the size distributions and chemical composition, using NanoParticle Tracking Analysis (NTA), Raman microspectroscopy and atomic force microscopy infrared (AFM-IR) spectroscopy as a function of sulfate aerosol seed pH. These insights may help understand aerosol properties after cloud cycling in the atmosphere. 
    more » « less
  5. Atmospheric aerosols are key contributors to cloud condensation nuclei (CCN) and ice nucleating particle (INP) formation, which can offset positive radiative forcing. Aerosol particles can undergo many cycles of droplet activation and subsequent drying before their removal from the atmosphere through dry or wet deposition. Cloud-aerosol-precipitation interactions are affected by cloud droplet or ice crystal formation, which is related to the physicochemical properties of aerosol particles. Isoprene-derived secondary organic aerosol (iSOA) is an abundant component aerosol and has been previously found in INPs and cloud water residues, and it includes both soluble and insoluble residues in its particle matrix. Currently, most of our understanding of iSOA is derived from studying the soluble residues, but there has been a measurement gap for characterizing the insoluble residues. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, a unique approach is utilized to collect the insoluble residues of SOA in ~3 μm droplets collected from a Spot Sampler from Aerosol Devices, Inc. iSOA is generated by reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid) in a humidified atmospheric chamber under dark conditions. Droplets are impacted directly on a substrate or in a liquid medium to study the roles of insoluble residues from both single-particle and bulk perspectives. A suite of microspectroscopy techniques, including Raman and optical photothermal infrared (O-PTIR) spectroscopy, are used to probe the chemical composition of the residues. Atomic force microscopy – photothermal infrared (AFM-PTIR) spectroscopy and Nanoparticle Tracking Analysis (NTA) are used to measure the size distributions of the residues. These insights may help understand the properties of residues from cloud droplet evaporation and subsequent cloud-aerosol-precipitation interactions in the atmosphere. 
    more » « less