skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 2, 2026

Title: Biodegradable, flexible adhesive patch for urinary bladder suture line reinforcement
Tissue failure at suture lines contributes to complications and readmissions following complex surgeries in distensible organs such as those performed in the lower urinary tract. Excess tension at points of tissue approximation can contribute to abnormal wound healing, urine leaks, infections, and fistula development. A flexible biodegradable adhesive patch that adheres to dynamic tissue and prevents non-targeted adhesion to adjacent tissue is needed to provide support at suture sites throughout the wound healing process. Herein, we have developed a ready-to-use bilayer adhesive patch (BLAP) to reinforce suture lines for application to expandable and dynamic fluid-filled tissues such as the bladder. The external non-adhesive layer of BLAP comprises a bioabsorbable poly(glycerol sebacate) (PGS) elastomer, preventing undesired adhesion to the adjunct tissues. The internal tissue binding layer is composed of PGS modified with L-dopamine (L-DOPA) to allow immediate adhesion to the wet surface of the target tissue. Physical and mechanical properties of the patches were tuned by varying glycerol to sebacate ratios, L-DOPA contents, and curing time to achieve compliance that approximates that of bladder tissue. The candidate PG2S and PG2SD0.018 biomaterials of the designed BLAP demonstrated Young's moduli of 49.4 kPa and 61.5 kPa and stretchability between 174.7% and 223.7%, respectively. BLAP adhered tightly to a porcine bladder repaired cystotomy ex vivo, reinforcing the sutured line and increasing bladder burst pressure more than stand-alone surgical sutures or a commercial bioadhesive glue, Tisseel®. These features, combined with >90% cytocompatibility and biodegradability, render BLAP a promising elastic bioadhesive patch to reinforce suture lines in the bladder. Beyond the urinary tract, BLAP has the potential to be mechanically tuned for a variety of other non-planar, dynamic tissues.  more » « less
Award ID(s):
2214057
PAR ID:
10648636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Applied Materials Today
ISSN:
2352-9407
Subject(s) / Keyword(s):
Surgical closure techniqueSurgical adhesive patchElastomerLevodopaPoly(glycerol sebacate)Suture reinforcement, Bladder
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mechanical properties and degradation profile are important parameters for the applications of biodegradable polyester such as poly(glycerol sebacate) in biomedical engineering. Here, a strategy is reported to make palmitate functionalized poly(glycerol sebacate) (PPGS) to alter the polymer hydrophobicity, crystallinity, microstructures and thermal properties. The changes of these intrinsic properties impart tunable degradation profiles and mechanical properties to the resultant elastomers depending on the palmitate contents. When the palmitates reach up to 16 mol%, the elastic modulus is tuned from initially 838 ± 55 kPa for the PGS to 333 ± 21 kPa for the PPGS under the same crosslinking conditions. The elastomer undergoes reversible elastic deformations for at least 1000 cycles within 20% strain without failure and shows enhanced elasticity. The polymer degradation is simultaneously inhibited because of the increased hydrophobicity. This strategy is different with other PGS modifications which could form a softer elastomer with less crosslinks but typically lead to a quicker degradation. Because the materials are made from endogenous molecules, they possess good cytocompatibility similar to the PGS control. Although these materials are designed specifically for small arteries, it is expected that they will be useful for other soft tissues too. 
    more » « less
  2. Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have potential advantages over sutures and staples for wound closure, hemostasis, and integration of implantable devices onto wet tissues. However, existing bioadhesives display several limitations including slow adhesion formation, weak bonding, low biocompatibility, poor mechanical match with tissues, and/or lack of triggerable benign detachment. Here, we report a bioadhesive that can form instant tough adhesion on various wet dynamic tissues and can be benignly detached from the adhered tissues on demand with a biocompatible triggering solution. The adhesion of the bioadhesive relies on the removal of interfacial water from the tissue surface, followed by physical and covalent cross-linking with the tissue surface. The triggerable detachment of the bioadhesive results from the cleavage of bioadhesive’s cross-links with the tissue surface by the triggering solution. After it is adhered to wet tissues, the bioadhesive becomes a tough hydrogel with mechanical compliance and stretchability comparable with those of soft tissues. We validate in vivo biocompatibility of the bioadhesive and the triggering solution in a rat model and demonstrate potential applications of the bioadhesive with triggerable benign detachment in ex vivo porcine models. 
    more » « less
  3. Abstract For decades, bioadhesive materials have garnered great attention due to their potential to replace sutures and staples for sealing tissues during minimally invasive surgical procedures. However, the complexities of delivering bioadhesives through narrow spaces and achieving strong adhesion in fluid‐rich physiological environments continue to present substantial limitations to the surgical translation of existing sealants. In this work, a new strategy for minimally invasive tissue sealing based on a multilayer bioadhesive patch, which is designed to repel body fluids, to form fast, pressure‐triggered adhesion with wet tissues, and to resist biofouling and inflammation is introduced. The multifunctional patch is realized by a synergistic combination of three distinct functional layers: i) a microtextured bioadhesive layer, ii) a dynamic, blood‐repellent hydrophobic fluid layer, and iii) an antifouling zwitterionic nonadhesive layer. The patch is capable of forming robust adhesion to tissue surfaces in the presence of blood, and exhibits superior resistance to bacterial adhesion, fibrinogen adsorption, and in vivo fibrous capsule formation. By adopting origami‐based fabrication strategies, it is demonstrated that the patch can be readily integrated with a variety of minimally invasive end effectors to provide facile tissue sealing in ex vivo porcine models, offering new opportunities for minimally invasive tissue sealing in diverse clinical scenarios. 
    more » « less
  4. Adhesive hydrogels with tunable mechanical properties and strong adhesion to wet, dynamic tissues have emerged as promising materials for tissue repair, with potential applications in wound closure, hemorrhage control, and surgical adhesives. This review highlights the key design principles, material classifications, and recent advances in adhesive hydrogels designed for vascular repair. The limitations of existing adhesive hydrogels, including insufficient mechanical durability, suboptimal biocompatibility, and challenges in targeted delivery, are critically evaluated. Furthermore, innovative strategies—such as incorporating self-healing capabilities, developing stimuli-responsive systems, integrating functional nanocomposites, and employing advanced fabrication techniques like 3D bioprinting—are discussed to enhance adhesion, mechanical stability, and vascular tissue regeneration. While significant progress has been made, further research and optimization are necessary to advance these materials toward clinical translation, offering a versatile and minimally invasive alternative to traditional vascular repair techniques. 
    more » « less
  5. Abstract Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long‐lasting interface. BioAdheSil, a silicone‐based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue‐infiltration‐based long‐term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long‐lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long‐term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines. 
    more » « less