Bragg coherent X-ray diffractive imaging is a cutting-edge method for recovering three-dimensional crystal structure with nanoscale resolution. Phase retrieval provides an atomic displacement parallel to the Bragg peak reciprocal lattice vector. The derivative of the displacement along the same vector provides the normal strain field, which typically serves as a proxy for any structural changes. In this communication it is found that the other component of the displacement gradient, perpendicular to the reciprocal lattice vector, provides additional information from the experimental data collected from nanocrystals with mobile dislocations. Demonstration on published experimental data show how the perpendicular component of the displacement gradient adds to existing analysis, enabling an estimate for the external stresses, pinpointing the location of surface dislocations, and predicting the dislocation motion in in situ experiments.
more »
« less
This content will become publicly available on June 1, 2026
A shape derivative algorithm for reconstructing elastic dislocations in geophysics
Not AvailableWe consider the inverse problem of determining an elastic dislocation that models a seismic fault in the quasi-static regime of aseismic, creeping faults, from displacement measurements made at the surface of Earth. We derive both a distributed and a boundary shape derivative that encodes the change in a misfit functional between the measured and the computed surface displacement under infinitesimal movements of the dislocation and infinitesimal changes in the slip vector, which gives the displacement jump across the dislocation. We employ the shape derivative in an iterative reconstruction algorithm. We present some numerical test of the reconstruction algorithm in a simplified 2D setting.
more »
« less
- PAR ID:
- 10648650
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Research in the Mathematical Sciences
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2522-0144
- Subject(s) / Keyword(s):
- Elastic dislocation Slip Inverse problem Shape derivative Iterative reconstruction Elastostatics Discontinuous Galerkin Seismic fault
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It has been well established that the internal length scale related to the cell size plays a critical role in the response of architected structures. It this paper, a Volterra derivative-based approach for deriving nonlocal continuum laws directly from an energy expression without involving spatial derivatives of the displacement is proposed. A major aspect of the work is the introduction of a nonlocal derivative-free directionality term, which recovers the classical deformation gradient in the infinitesimal limit. The proposed directionality term avoids issues with correspondences under nonsymmetric conditions (such a unequal distribution of points that cause trouble with conventional correspondence-based approaches in peridynamics). Using this approach, we derive a nonlocal version of a shear deformable beam model in the form of integro-differential equations. As an application, buckling analysis of architected beams with different core shapes is performed. In this context, we also provide a physical basis for the consideration of energy for nonaffine (local bending) deformation. This removes the need for additional energy in an ad hoc manner towards suppressing zero-energy modes. The numerical results demonstrate that the proposed framework can accurately estimate the critical buckling load for a beam in comparison to 3-D simulations at a small fraction of the cost and computational time. Efficacy of the framework is demonstrated by analysing the responses of a deformable beam under different loads and boundary conditions.more » « less
-
Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)Civil infrastructures are susceptible to damage due to external forces such as winds and earthquakes. These external forces cause damage to buildings and different civil structures. To prevent this, active control systems are executed. These systems use sensors to measure the displacement of the infrastructure, then actuators are utilized to provide a force that counteracts that displacement. In this study, a Proportional Integral Derivative (PID) controller was used to minimize the impact of an earthquake disturbance on multi-story structures. The proportional, integral, and derivative gains of the controller were obtained using Particle Swarm Optimization (PSO). This PID controller was validated on a simulated five-story structure based on the Kajima Shizuoka building with five ideal actuators. The effectiveness of the PID controller in reducing the seismic response of the structure with regards to inter-story displacement and acceleration was compared to the uncontrolled response of the structure. It is found that the PID controller with PID parameters obtained from the PSO algorithm offers effective control for the simulated five story structure.more » « less
-
Machining complex thin-wall components (such as compressor disks and casings in aircraft engines) has been a challenging task because workpiece deformations and vibrations not only compromise the surface integrity but also induce residual stresses in the final products. This paper offers a physics-based method that accounts for the damping effects and external loads for reconstructing the dynamic displacement and strain fields of a thin-wall workpiece in real-time with non-contact displacement measurements during machining. Given that part dynamic behaviors can be characterized by superposition of mode shapes, the time-varying displacement and strain fields are reconstructed with modal coefficients that are updated in real time using in situ measurements. The reconstruction method has been numerically verified with finite element analyses with the sensor locations optimized using a genetic algorithm; both static and dynamic field reconstructions are analyzed. Tradeoffs between the number of sensors and the reconstruction efficiency in terms of computation time and error are discussed. The method has been evaluated experimentally on a lathe machine testbed, where the dynamics of the distributed physical fields have been successfully captured and analyzed, demonstrating its practicality as a real-time tool for continuously monitoring the displacement and strain distributions across a disk workpiece during machining.more » « less
-
null (Ed.)Defects in strongly correlated materials such as V 2 O 3 play influential roles on their electrical properties. Understanding the defects' structure is of paramount importance. In this project, we investigate defect structures in V 2 O 3 grown via a flux method. We use AFM to see surface features in several large flake-like particles that exhibit characteristics of spiral growth. We also use Bragg coherent diffractive imaging (BCDI) to probe in 3 dimensions a smaller particle without flake-like morphology and note an absence of the pure screw dislocation characteristic of spiral growth. We identified and measured several defects by comparing the observed local displacement of the crystal, measured via BCDI to well-known models of the displacement around defects in the crystal. We identified two partial dislocations in the crystal. We discuss how defects of different types influence the morphology of V 2 O 3 crystals grown via a flux method.more » « less
An official website of the United States government
