skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Intrinsic Disinfection Byproducts in Free Chlorine and Chloramine Systems: Formation of Chlorite, Chlorate, Perchlorate, and Chloronitramide Anion
Intrinsic disinfection byproducts are formed by reactions between disinfectant species and/or their decomposition products. In this review, we focus on a subset that accumulates in free chlorine and chloramine drinking water systems. First, we review the sequential formation of chlorite, chlorate, and perchlorate in hypochlorite feedstocks. Model simulations indicate chlorate and perchlorate can accumulate under realistic dosing conditions and can be managed with less concentrated feedstocks and climate-controlled storage. Second, we review the formation pathways of dichloramine and chloronitramide anion. Chloronitramide anion accumulation may be mitigated by increasing monochloramine stability and quenching reactive nitrogen species in its formation pathway.  more » « less
Award ID(s):
2034481
PAR ID:
10648676
Author(s) / Creator(s):
; ;
Editor(s):
Prasse, C
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Current Opinion in Environmental Science & Health
ISSN:
2468-5844
Page Range / eLocation ID:
100684
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Naturally occurring chlorate (ClO3) has been observed on Earth and potentially plays important roles in hydrology and mineralogy on Mars. However, natural sources of chlorate are uncertain. Here, we quantify the importance of atmospheric sources of chlorate. We use GEOS‐Chem, a global three‐dimensional chemical transport model, to simulate the formation, photochemical loss, transport, and deposition of atmospheric chlorate on present‐day Earth. We also develop a method to estimate the17O‐excess (∆17O) and the36Cl‐to‐total‐Cl ratio (36Cl/Cl) of atmospheric chlorate to interpret the observed isotopic composition of chlorate accumulated in desert soils. The model predicts that gas‐phase chemistry can produce 15 Gg Cl year−1of chloric acid (HClO3), which predominantly is taken up by aerosols to form particulate chlorate. Comparing the model with observations suggests that particulate chlorate undergoes chemical loss in the atmosphere, which controls the amount reaching Earth's surface. We show that the initial ∆17O that atmospheric chlorate acquires during formation would be erased rapidly in acidic aerosols due to the exchange of oxygen atoms with water. The analysis of36Cl/Cl does not preclude a partial stratospheric origin for chlorate deposits in the Atacama Desert. In Death Valley, aqueous‐phase oxidation of oxychlorine species and anthropogenic activities potentially have greater influence. Our findings highlight the need for more observations of atmospheric chlorate and laboratory measurements of its reactivity in acidic conditions. Atmospheric chemistry should be considered in the future studies of the origin of chlorate on Mars. 
    more » « less
  2. Abstract In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection. 
    more » « less
  3. null (Ed.)
    A rapid and sensitive method is described for measuring perchlorate (ClO 4 − ), chlorate (ClO 3 − ), chlorite (ClO 2 − ), bromate (BrO 3 − ), and iodate (IO 3 − ) ions in natural and treated waters using non-suppressed ion chromatography with electrospray ionization and tandem mass spectrometry (NS-IC-MS/MS). Major benefits of the NS-IC-MS/MS method include a short analysis time (12 minutes), low limits of quantification for BrO 3 − (0.10 μg L −1 ), ClO 4 − (0.06 μg L −1 ), ClO 3 − (0.80 μg L −1 ), and ClO 2 − (0.40 μg L −1 ), and compatibility with conventional LC-MS/MS instrumentation. Chromatographic separations were generally performed under isocratic conditions with a Thermo Scientific Dionex AS16 column, using a mobile phase of 20% 1 M aqueous methylamine and 80% acetonitrile. The isocratic method can also be optimized for IO 3 − analysis by including a gradient from the isocratic mobile phase to 100% 1 M aqueous methylamine. Four common anions (Cl − , Br − , SO 4 2− , and HCO 3 − /CO 3 2− ), a natural organic matter isolate (Suwannee River NOM), and several real water samples were tested to examine influences of natural water constituents on oxyhalide detection. Only ClO 2 − quantification was significantly affected – by elevated chloride concentrations (>2 mM) and NOM. The method was successfully applied to quantify oxyhalides in natural waters, chlorinated tap water, and waters subjected to advanced oxidation by sunlight-driven photolysis of free available chlorine (sunlight/FAC). Sunlight/FAC treatment of NOM-free waters containing 200 μg L −1 Br − resulted in formation of up to 263 ± 35 μg L −1 and 764 ± 54 μg L −1 ClO 3 − , and up to 20.1 ± 1.0 μg L −1 and 33.8 ± 1.0 μg L −1 BrO 3 − (at pH 6 and 8, respectively). NOM strongly inhibited ClO 3 − and BrO 3 − formation, likely by scavenging reactive oxygen or halogen species. As prior work shows that the greatest benefits in applying the sunlight/FAC process for purposes of improving disinfection of chlorine-resistant microorganisms are realized in waters with lower DOC levels and higher pH, it may therefore be desirable to limit potential applications to waters containing moderate DOC concentrations ( e.g. , ∼1–2 mg C L −1 ), low Br − concentrations ( e.g. , <50 μg L −1 ), and circumneutral to moderately alkaline pH ( e.g. , pH 7–8) to strike a balance between maximizing microbial inactivation while minimizing formation of oxyhalides and other disinfection byproducts. 
    more » « less
  4. NA (Ed.)
    Sea-spray aerosols (SSAs) contribute to atmospheric loading, bringing toxic compounds like mercury (Hg) to the atmosphere, affecting the climate and human health. Despite their importance, the investigation into surface modification, including heterogeneous chemical and photochemical reactions of SSAs, is limited. In this work, we studied the heterogeneous chemistry and photochemistry of a single suspended SSA particle and a SSA containing Hg(II) in a reactive environment using optical trapping – Raman spectroscopy. The experiments are focused on the study of hygroscopicity, heterogeneous chemical reaction with ozone (O3), photochemical reaction with UVC radiation of an optically suspended single SSA particle, and photo-reduction of Hg(II) in SSAs under UVC radiation. Results show different Raman signal responses of a single SSA particle when it is optically trapped in air under varying relative humidity conditions as the aerosol particle uptakes and loses liquid water from the surrounding environment. The state and size of the aerosol are determined through the on-time images and different single-particle Raman spectral features. Results also show that the formation of chlorate (ClO3−) is a reaction product of the heterogeneous reaction between the SSA particle and O3. The photochemical reaction products, as the SSA particle suspended in air under UVC radiation, are ClO3− and perchlorate (ClO4−). Further, we observed that these reactions occur only on the surface of the SSA particle. Based on the results, we hypothesize that Hg(II) can be photo-reduced to Hg(I) in SSAs through UVC radiation, and the amount of Hg(I) in SSAs is minor and balanced between the photo-oxidation and photo-reduction reactions. 
    more » « less
  5. Based on Coulomb's Law alone, electrostatic repulsion between two anions is expected to prevent their dimerization. Contrary to that idea, this Tutorial Review will present evidence showing that anion–anion dimers of protic hydroxyanions can form readily, and describe conditions that facilitate their formation. From X-ray crystal structures, we learn that hydroxyanions dimerize and oligomerize by overcoming long-range electrostatic opposition. Common examples are hydroxyanions of phosphate, sulfate, and carbonate, often in partnership with charged and neutral receptors. Short-range hydrogen bonds between anionic donors and acceptors are defined as anti-electrostatic hydrogen bonds (AEHBs) with insight from theoretical studies. While anion dimers are difficult to identify unequivocally in solution, these solution dimers have recently been definitively identified. The development of the supramolecular chemistry of anion–anion dimers has led to applications in hierarchical assemblies, such as supramolecular polymers and hydrogen bonded organic frameworks. 
    more » « less