skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Offline Performance of a Nonlocal Deep Learning Parameterization for Climate Model Representation of Atmospheric Gravity Waves
Abstract Gravity waves (GWs) make crucial contributions to the middle atmospheric circulation. Yet, their climate model representation remains inaccurate, leading to key circulation biases. This study introduces a set of three neural networks (NNs) that learn to predict GW fluxes (GWFs) from multiple years of high‐resolution ERA5 reanalysis. The three NNs: a ANN, a ANN‐CNN, and an Attention UNet embed different levels of horizontal nonlocality in their architecture and are capable of representing nonlocal GW effects that are missing from current operational GW parameterizations. The NNs are evaluated offline on both time‐averaged statistics and time‐evolving flux variability. All NNs, especially the Attention UNet, accurately recreate the global GWF distribution in both the troposphere and the stratosphere. Moreover, the Attention UNet most skillfully predicts the transient evolution of GWFs over prominent orographic and nonorographic hotspots, with the model being a close second. Since even ERA5 does not resolve a substantial portion of GWFs, this deficiency is compensated by subsequently applying transfer learning on the ERA5‐trained ML models for GWFs from a 1.4 km global climate model. It is found that the re‐trained models both (a) preserve their learning from ERA5, and (b) learn to appropriately scale the predicted fluxes to account for ERA5's limited resolution. Our results highlight the importance of embedding nonlocal information for a more accurate GWF prediction and establish strategies to complement abundant reanalysis data with limited high‐resolution data to develop machine learning‐driven parameterizations for missing mesoscale processes in climate models.  more » « less
Award ID(s):
2004492
PAR ID:
10648706
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
17
Issue:
10
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global climate models parameterize a range of atmospheric‐oceanic processes, including gravity waves (GWs), clouds, moist convection, and turbulence, that cannot be sufficiently resolved. These subgrid‐scale closures for unresolved processes are a substantial source of model uncertainty. Here, we present a new approach to developing machine learning (ML) parameterizations of small‐scale climate processes by fine‐tuning a pre‐trained AI foundation model (FM). FMs are largely unexplored in climate research. A pre‐trained encoder‐decoder from a 2.3 billion parameter FM (NASA and IBM Research's Prithvi WxC)—which contains a latent probabilistic representation of atmospheric evolution—is fine‐tuned (or reused) to create a deep learning parameterization for atmospheric gravity waves (GWs); a process unseen during pre‐training. The parameterization captures GW effects for a coarse‐resolution climate model by learning the fluxes from an atmospheric reanalysis with 10 times finer resolution. A comparison of monthly averages and instantaneous evolution with a machine learning model baseline (an Attention U‐Net) reveals superior predictive performance of the FM parameterization throughout the atmosphere, even in regions excluded during pre‐training. This performance boost is quantified using the Hellinger distance, which is 0.11 for the baseline and 0.06 for the fine‐tuned model. Our findings emphasize the versatility and reusability of FMs, which could be used to accomplish a range of atmosphere‐ and climate‐related applications, leading the way for the creation of observations‐driven and physically accurate parameterizations for more earth system processes. 
    more » « less
  2. Abstract There are different strategies for training neural networks (NNs) as subgrid‐scale parameterizations. Here, we use a 1D model of the quasi‐biennial oscillation (QBO) and gravity wave (GW) parameterizations as testbeds. A 12‐layer convolutional NN that predicts GW forcings for given wind profiles, when trained offline in abig‐dataregime (100‐year), produces realistic QBOs once coupled to the 1D model. In contrast, offline training of this NN in asmall‐dataregime (18‐month) yields unrealistic QBOs. However, online re‐training of just two layers of this NN using ensemble Kalman inversion and only time‐averaged QBO statistics leads to parameterizations that yield realistic QBOs. Fourier analysis of these three NNs' kernels suggests why/how re‐training works and reveals that these NNs primarily learn low‐pass, high‐pass, and a combination of band‐pass filters, potentially related to the local and non‐local dynamics in GW propagation and dissipation. These findings/strategies generally apply to data‐driven parameterizations of other climate processes. 
    more » « less
  3. Abstract Subgrid‐scale processes, such as atmospheric gravity waves (GWs), play a pivotal role in shaping the Earth's climate but cannot be explicitly resolved in climate models due to limitations on resolution. Instead, subgrid‐scale parameterizations are used to capture their effects. Recently, machine learning (ML) has emerged as a promising approach to learn parameterizations. In this study, we explore uncertainties associated with a ML parameterization for atmospheric GWs. Focusing on the uncertainties in the training process (parametric uncertainty), we use an ensemble of neural networks to emulate an existing GW parameterization. We estimate both offline uncertainties in raw NN output and online uncertainties in climate model output, after the neural networks are coupled. We find that online parametric uncertainty contributes a significant source of uncertainty in climate model output that must be considered when introducing NN parameterizations. This uncertainty quantification provides valuable insights into the reliability and robustness of ML‐based GW parameterizations, thus advancing our understanding of their potential applications in climate modeling. 
    more » « less
  4. Abstract A promising approach to improve climate‐model simulations is to replace traditional subgrid parameterizations based on simplified physical models by machine learning algorithms that are data‐driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled to an atmospheric model. Here, we learn an NN parameterization from a high‐resolution atmospheric simulation in an idealized domain by accurately calculating subgrid terms through coarse graining. The NN parameterization has a structure that ensures physical constraints are respected, such as by predicting subgrid fluxes instead of tendencies. The NN parameterization leads to stable simulations that replicate the climate of the high‐resolution simulation with similar accuracy to a successful random‐forest parameterization while needing far less memory. We find that the simulations are stable for different horizontal resolutions and a variety of NN architectures, and that an NN with substantially reduced numerical precision could decrease computational costs without affecting the quality of simulations. 
    more » « less
  5. Abstract We present single‐column gravity wave parameterizations (GWPs) that use machine learning to emulate non‐orographic gravity wave (GW) drag and demonstrate their ability to generalize out‐of‐sample. A set of artificial neural networks (ANNs) are trained to emulate the momentum forcing from a conventional GWP in an idealized climate model, given only one view of the annual cycle and one phase of the Quasi‐Biennial Oscillation (QBO). We investigate the sensitivity of offline and online performance to the choice of input variables and complexity of the ANN. When coupled with the model, moderately complex ANNs accurately generate full cycles of the QBO. When the model is forced with enhanced CO2, its climate response with the ANN matches that generated with the physics‐based GWP. That ANNs can accurately emulate an existing scheme and generalize to new regimes given limited data suggests the potential for developing GWPs from observational estimates of GW momentum transport. 
    more » « less