skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Total Coloring Graphs With Large Maximum Degree
ABSTRACT We prove that for any graph , the total chromatic number of is at most . This saves one color in comparison with the result of Hind from 1992. In particular, our result says that if , then has a total coloring using at most colors. When is regular and has a sufficient number of vertices, we can actually save an additional two colors. Specifically, we prove that for any , there exists such that: if is an ‐regular graph on vertices with , then . This confirms the Total Coloring Conjecture for such graphs .  more » « less
Award ID(s):
2345869
PAR ID:
10648716
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
WILEY
Date Published:
Journal Name:
Journal of Graph Theory
Volume:
110
Issue:
3
ISSN:
0364-9024
Page Range / eLocation ID:
249 to 262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT If is a list assignment of colors to each vertex of an ‐vertex graph , then anequitable‐coloringof is a proper coloring of vertices of from their lists such that no color is used more than times. A graph isequitably‐choosableif it has an equitable ‐coloring for every ‐list assignment . In 2003, Kostochka, Pelsmajer, and West (KPW) conjectured that an analog of the famous Hajnal–Szemerédi Theorem on equitable coloring holds for equitable list coloring, namely, that for each positive integer every graph with maximum degree at most is equitably ‐choosable. The main result of this paper is that for each and each planar graph , a stronger statement holds: if the maximum degree of is at most , then is equitably ‐choosable. In fact, we prove the result for a broader class of graphs—the class of the graphs in which each bipartite subgraph with has at most edges. Together with some known results, this implies that the KPW Conjecture holds for all graphs in , in particular, for all planar graphs. We also introduce the new stronger notion ofstrongly equitable(SE, for short) list coloring and prove all bounds for this parameter. An advantage of this is that if a graph is SE ‐choosable, then it is both equitably ‐choosable and equitably ‐colorable, while neither of being equitably ‐choosable and equitably ‐colorable implies the other. 
    more » « less
  2. Abstract Let be a simple graph and be the chromatic index of . We call a ‐critical graphif for every edge of , where is maximum degree of . Let be an edge of ‐critical graph and be an (proper) edge ‐coloring of . Ane‐fanis a sequence of alternating vertices and distinct edges such that edge is incident with or , is another endvertex of and is missing at a vertex before for each with . In this paper, we prove that if , where and denote the degrees of vertices and , respectively, then colors missing at different vertices of are distinct. Clearly, a Vizing fan is an ‐fan with the restricting that all edges being incident with one fixed endvertex of edge . This result gives a common generalization of several recently developed new results on multifan, double fan, Kierstead path of four vertices, and broom. By treating some colors of edges incident with vertices of low degrees as missing colors, Kostochka and Stiebitz introduced ‐fan. In this paper, we also generalize the ‐fan from centered at one vertex to one edge. 
    more » « less
  3. For positive integers 𝑛, 𝑟, 𝑠 with 𝑟 > 𝑠, the set-coloring Ramsey number 𝑅(𝑛; 𝑟, 𝑠) is the minimum 𝑁 such that if every edge of the complete graph 𝐾_𝑁 receives a set of 𝑠 colors from a palette of 𝑟 colors, then there is guaranteed to be a monochromatic clique on 𝑛 vertices, that is, a subset of 𝑛 vertices where all of the edges between them receive a common color. In particular, the case 𝑠 = 1 corresponds to the classical multicolor Ramsey number. We prove general upper and lower bounds on 𝑅(𝑛; 𝑟, 𝑠) which imply that 𝑅(𝑛; 𝑟, 𝑠) = 2^Θ(𝑛𝑟) if 𝑠/𝑟 is bounded away from 0 and 1. The upper bound extends an old result of Erdős and Szemerédi, who treated the case 𝑠 = 𝑟 − 1, while the lower bound exploits a connection to error-correcting codes. We also study the analogous problem for hypergraphs. 
    more » « less
  4. Abstract A result of Gyárfás says that for every 3‐coloring of the edges of the complete graph , there is a monochromatic component of order at least , and this is best possible when 4 divides . Furthermore, for all and every ‐coloring of the edges of the complete ‐uniform hypergraph , there is a monochromatic component of order at least and this is best possible for all . Recently, Guggiari and Scott and independently Rahimi proved a strengthening of the graph case in the result above which says that the same conclusion holds if is replaced by any graph on vertices with minimum degree at least ; furthermore, this bound on the minimum degree is best possible. We prove a strengthening of the case in the result above which says that the same conclusion holds if is replaced by any ‐uniform hypergraph on vertices with minimum ‐degree at least ; furthermore, this bound on the ‐degree is best possible. 
    more » « less
  5. Abstract We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any $$d$$ -regular graph on $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ deviates from $$\frac{n}{d+1}$$ by at most $$2$$ . The second is that every graph on $$n$$ vertices with minimum degree $$\delta$$ contains a spanning subgraph in which the number of vertices of each degree does not exceed $$\frac{n}{\delta +1}+2$$ . Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices $$n$$ . In particular we show that if $$d^3 \log n \leq o(n)$$ then every $$d$$ -regular graph with $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ is $$(1+o(1))\frac{n}{d+1}$$ . We also prove that any graph with $$n$$ vertices and minimum degree $$\delta$$ contains a spanning subgraph in which no degree is repeated more than $$(1+o(1))\frac{n}{\delta +1}+2$$ times. 
    more » « less