skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 13, 2026

Title: SIRIUS: Identifying Metal-poor Stars Enriched by a Single Supernova in a Dwarf Galaxy Cosmological Zoom-in Simulation Resolving Individual Massive Stars
Abstract Metal-poor stars enriched by a single supernova (mono-enriched stars) are direct proof (and provide valuable probes) of supernova nucleosynthesis. Photometric and spectroscopic observations have shown that metal-poor stars have a wide variety of chemical compositions; the star’s chemical composition reflects the nucleosynthesis process(es) that occurred before the star’s formation. While the identification of mono-enriched stars enables us to study the ejecta properties of a single supernova, the fraction of mono-enriched stars among metal-poor stars remains unknown. Here we identify mono-enriched stars in a dwarf galaxy cosmological zoom-in simulation resolving individual massive stars. We find that the fraction of mono-enriched stars is higher for lower metallicity in stars with [Fe/H]  < −2.5. The percentages of mono-enriched stars are 11% at [Fe/H] =  −5.0 and 1% at [Fe/H] =  −2.5, suggesting that most metal-poor stars are affected by multiple supernovae. We also find that mono-enriched stars tend to be located near the center of the simulated dwarf. Such regions will be explored in detail in upcoming surveys such as the Prime Focus Spectrograph on the Subaru telescope.  more » « less
Award ID(s):
1927130
PAR ID:
10649156
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
980
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The r-process-enhanced (RPE) stars provide fossil records of the assembly history of the Milky Way (MW) and the nucleosynthesis of the heaviest elements. Observations by the R-Process Alliance (RPA) and others have confirmed that many RPE stars are associated with chemo-dynamically tagged groups, which likely came from accreted dwarf galaxies of the MW. However, we do not know how RPE stars are formed. Here, we present the result of a cosmological zoom-in simulation of an MW-like galaxy with r-process enrichment, performed with the highest resolution in both time and mass. Thanks to this advancement, unlike previous simulations, we find that most highly RPE (r-II; [Eu/Fe] > +0.7) stars are formed in low-mass dwarf galaxies that have been enriched in r-process elements for [Fe/H] $$\lt -2.5$$, while those with higher metallicity are formed in situ, in locally enhanced gas clumps that were not necessarily members of dwarf galaxies. This result suggests that low-mass accreted dwarf galaxies are the main formation site of r-II stars with [Fe/H] $$\, \lt -2.5$$. We also find that most low-metallicity r-II stars exhibit halo-like kinematics. Some r-II stars formed in the same halo show low dispersions in [Fe/H] and somewhat larger dispersions of [Eu/Fe], similar to the observations. The fraction of simulated r-II stars is commensurate with observations from the RPA, and the distribution of the predicted [Eu/Fe] for halo r-II stars matches that observed. These results demonstrate that RPE stars can be valuable probes of the accretion of dwarf galaxies in the early stages of their formation. 
    more » « less
  2. ABSTRACT We present a detailed chemical abundance and kinematic analysis of six extremely metal-poor (−4.2 ≤ [Fe/H] ≤−2.9) halo stars with very low neutron-capture abundances ([Sr/H] and [Ba/H]) based on high-resolution Magellan/MIKE spectra. Three of our stars have [Sr/Ba] and [Sr/H] ratios that resemble those of metal-poor stars in ultra-faint dwarf galaxies (UFDs). Since early UFDs may be the building blocks of the Milky Way, extremely metal-poor halo stars with low, UFD-like Sr and Ba abundances may thus be ancient stars from the earliest small galactic systems that were accreted by the proto-Milky Way. We label these objects as Small Accreted Stellar System (SASS) stars, and we find an additional 61 similar ones in the literature. A kinematic analysis of our sample and literature stars reveals them to be fast-moving halo objects, all with retrograde motion, indicating an accretion origin. Because SASS stars are much brighter than typical UFD stars, identifying them offers promising ways towards detailed studies of early star formation environments. From the chemical abundances of SASS stars, it appears that the earliest accreted systems were likely enriched by a few supernovae whose light element yields varied from system to system. Neutron-capture elements were sparsely produced and/or diluted, with r-process nucleosynthesis playing a role. These insights offer a glimpse into the early formation of the Galaxy. Using neutron-capture elements as a distinguishing criterion for early formation, we have access to a unique metal-poor population that consists of the oldest stars in the universe. 
    more » « less
  3. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less
  4. ABSTRACT We present a high-resolution (R ∼ 35 000), high signal-to-noise (S/N = 350) Magellan/MIKE spectrum of the bright extremely metal-poor star 2MASS J1808−5104. We find [Fe/H] = −4.01 (spectroscopic LTE stellar parameters), [Fe/H] = −3.8 (photometric stellar parameters), and [Fe/H] = −3.7 (spectroscopic NLTE stellar parameters). We measured a carbon-to-iron ratio of [C/Fe] = 0.38 from the CH G-band. J1808−5104 is thus not carbon-enhanced, contrary to many other stars with similarly low-iron abundances. We also determine, for the first time, a barium abundance ([Ba/Fe] = −0.78), and obtain a significantly reduced upper limit for the nitrogen abundance ([N/Fe] < −0.2). For its [Ba/Fe] abundance, J1808−5104 has a lower [Sr/Ba] ratio compared to other stars, consistent with behaviour of stars in ultra-faint dwarf galaxies. We also fit the abundance pattern of J1808−5104 with nucleosynthesis yields from a grid of Population III supernova models. There is a good fit to the abundance pattern that suggests J1808−5104 originated from gas enriched by a single massive supernova with a high explosion energy of E = 10 × 1051 erg and a progenitor stellar mass of M = 29.5 M⊙. Interestingly, J1808−5104 is a member of the Galactic thin disc, as confirmed by our detailed kinematic analysis and calculated stellar actions and velocities. Finally, we also established the orbital history of J1808−5104 using our time-dependent Galactic potential the ORIENT. J1808−5104 appears to have a stable quasi-circular orbit and been largely confined to the thin disc. This unique orbital history, the star’s very old age (∼13.5 Gyr), and the low [C/Fe] and [Sr/Ba] ratios suggest that J1808−5104 may have formed at the earliest epoch of the hierarchical assembly of the Milky Way, and it is most likely associated with the primordial thin disc. 
    more » « less
  5. Abstract Stars that formed with an initial mass of over 50Mare very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50M, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys. 
    more » « less