Abstract Spindle assembly in vertebrates requires the Aurora kinase, which is targeted to microtubules and activated by TPX2 (Targeting Protein of XKLP2). In Arabidopsis (Arabidopsis thaliana), TPX2-LIKE 3 (TPXL3), but not the highly conserved TPX2, is essential. To test the hypothesis that TPXL3 regulates the function of α Aurora kinase in spindle assembly, we generated transgenic Arabidopsis lines expressing an artificial microRNA targeting TPXL3 mRNA (amiR-TPXL3). The resulting mutants exhibited growth retardation, which was linked to compromised TPXL3 expression. In the mutant cells, α Aurora was delocalized from spindle microtubules to the cytoplasm, and spindles were assembled without recognizable poles. A functional TPXL3-GFP fusion protein first prominently appeared on the prophase nuclear envelope. Then, TPXL3-GFP localized to spindle microtubules (primarily toward the spindle poles, like γ-tubulin), and finally to the re-forming nuclear envelope during telophase and cytokinesis. However, TPXL3 was absent from phragmoplast microtubules. In addition, we found that the TPXL3 N-terminal Aurora-binding motif, microtubule-binding domain, and importin-binding motif, but not the C-terminal segment, were required for its mitotic function. Expression of truncated TPXL3 variants enhanced the defects in spindle assembly and seedling growth of amiR-TPXL3 plants. Taken together, our findings uncovered the essential function of TPXL3, but not TPX2, in targeting and activating α Aurora kinase for spindle apparatus assembly in Arabidopsis.
more »
« less
This content will become publicly available on November 10, 2026
Arabidopsis AUGMIN8 Contains Two Independent Microtubule Association Domains
ABSTRACT Plant cells create a plasma membrane‐associated network of microtubules that are nucleated by γ‐tubulin ring complexes primarily through microtubule‐dependent microtubule nucleation (MDMN). This dynamic array organizes into specific patterns in response to developmental and environmental cues to influence primary cell wall construction. The molecular mechanisms directing the creation of cortical microtubule array patterns are largely unknown. The hetero‐octameric AUGMIN complex facilitates mitotic spindle formation by associating γ‐tubulin ring complexes with existing spindle microtubules and creating parallel branched microtubules through MDMN. AUGMIN8, the key linker protein connecting the AUGMIN complex to the parent microtubule, is encoded by a paralogous family of QWRF genes in flowering plants. Members of the QWRF family are distinguished by an unstructured N‐terminal half encoded in a single 5′ exon. We hypothesize that the QWRF paralogs form interchangeable AUGMIN microtubule binding subunits that confer specific roles to the AUGMIN complex in mitotic and non‐mitotic microtubule arrays. We identify four QWRF family members expressed inArabidopsishypocotyl cells and investigate the sites of QWRF interaction with cortical microtubules using transient transformation of fluorescently tagged constructs in the heterologousNicotiana benthamianasystem. We show that full‐length QWRF8 and QWRF4 associate with non‐mitotic, cortical microtubules as distributed puncta where QWRF8 shows evidence for two independent sites of microtubule association. Sequence comparisons and in vivo assay with homologous fragments from QWRF1, 2, 4, and 5 define a shared N‐terminal conserved microtubule association domain. We additionally identify protein regions leading to the formation of microtubule‐associated “QWRF bodies” potentially linked to discontinuous localization on microtubules. We identify the “QWRF” protein motif as a conserved domain associating the AUGMIN8 paralogs with AUGMIN6, part of the larger AUGMIN complex.
more »
« less
- PAR ID:
- 10649219
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Cytoskeleton
- ISSN:
- 1949-3584
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
γ-Tubulin typically forms a ring-shaped complex with 5 related γ-tubulin complex proteins (GCP2 to GCP6), and this γ-tubulin ring complex (γTuRC) serves as a template for microtubule (MT) nucleation in plants and animals. While the γTuRC takes part in MT nucleation in most eukaryotes, in fungi such events take place robustly with just the γ-tubulin small complex (γTuSC) assembled by γ-tubulin plus GCP2 and GCP3. To explore whether the γTuRC is the sole functional γ-tubulin complex in plants, we generated 2 mutants of theGCP6gene encoding the largest subunit of the γTuRC inArabidopsis thaliana. Both mutants showed similar phenotypes of dwarfed vegetative growth and reduced fertility. Thegcp6mutant assembled the γTuSC, while the wild-type cells had GCP6 join other GCPs to produce the γTuRC. Although thegcp6cells had greatly diminished γ-tubulin localization on spindle MTs, the protein was still detected there. Thegcp6cells formed spindles that lacked MT convergence and discernable poles; however, they managed to cope with the challenge of MT disorganization and were able to complete mitosis and cytokinesis. Our results reveal that the γTuRC is not the only functional form of the γ-tubulin complex for MT nucleation in plant cells, and that γ-tubulin-dependent, but γTuRC-independent, mechanisms meet the basal need of MT nucleation. Moreover, we show that the γTuRC function is more critical for the assembly of spindle MT array than for the phragmoplast. Thus, our findings provide insight into acentrosomal MT nucleation and organization.more » « less
-
The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis. Notably, Kinesin-14D1 was enriched on the midzone microtubules of prophase and mitotic spindles and later persisted in the spindle and phragmoplast midzones. The kinesin-14d1 mutant had kinetochore fibers disengaged from each other during mitosis and exhibited hypersensitivity to the microtubule-depolymerizing herbicide oryzalin. Oryzalin-treated kinesin-14d1 mutant cells had kinetochore fibers tangled together in collapsed spindle microtubule arrays. Kinesin-14D1, unlike other Kinesin-14 motors, showed slow microtubule plus end-directed motility, and its localization and function were dependent on its motor activity and the novel malectin-like domain. Our findings revealed a Kinesin-14D1-dependent mechanism that employs interpolar microtubules to regulate the organization of kinetochore fibers for acentrosomal spindle morphogenesis.more » « less
-
Microtubule self-organization is an essential physical process underlying several essential cellular functions, including cell division. In cell division, the dominant arrangement is the mitotic spindle, a football-shaped microtubule-based machine responsible for separating the chromosomes. We are interested in the underlying fundamental principles behind the self-organization of the spindle shape. Prior biological works have hypothesized that motor proteins control the proper formation of the spindle. Many of these motor proteins are also microtubule-crosslinkers, so it is unclear if the critical aspect is the motor activity or the crosslinking. In this study, we seek to address this question by examining the self-organization of microtubules using crosslinkers alone. We use a minimal system composed of tubulin, an antiparallel microtubule-crosslinking protein, and a crowding agent to explore the phase space of organizations as a function of tubulin and crosslinker concentration. We find that the concentration of the antiparallel crosslinker, MAP65, has a significant effect on the organization and resulted in spindle-like arrangements at relatively low concentration without the need for motor activity. Surprisingly, the length of the microtubules only moderately affects the equilibrium phase. We characterize both the shape and dynamics of these spindle-like organizations. We find that they are birefringent homogeneous tactoids. The microtubules have slow mobility, but the crosslinkers have fast mobility within the tactoids. These structures represent a first step in the recapitulation of self-organized spindles of microtubules that can be used as initial structures for further biophysical and active matter studies relevant to the biological process of cell division.more » « less
-
Murray, James (Ed.)Abstract TPX2 proteins were first identified in vertebrates as a key mitotic spindle assembly factor. Subsequent studies demonstrated that TPX2 is an intricate protein, with functionally and structurally distinct domains and motifs including Aurora kinase-binding, importin-binding, central microtubule-binding, and C-terminal TPX2 conserved domain, among others. The first plant TPX2-like protein, WAVE-DAMPENED2, was identified in Arabidopsis as a dominant mutation responsible for reducing the waviness of roots grown on slanted agar plates. Each plant genome encodes at least one ‘canonical’ protein with all TPX2 domains and a family of proteins (20 in Arabidopsis) that diversified to contain only some of the domains. Although all plant TPX2-family proteins to date bind microtubules, they function in distinct processes such as cell division, regulation of hypocotyl cell elongation by hormones and light signals, vascular development, or abiotic stress tolerance. Consequently, their expression patterns, regulation, and functions have diverged considerably. Here we summarize the current body of knowledge surrounding plant TPX2-family proteins.more » « less
An official website of the United States government
