skip to main content


Title: A guide to plant TPX2-like and WAVE-DAMPENED2-like proteins
Abstract TPX2 proteins were first identified in vertebrates as a key mitotic spindle assembly factor. Subsequent studies demonstrated that TPX2 is an intricate protein, with functionally and structurally distinct domains and motifs including Aurora kinase-binding, importin-binding, central microtubule-binding, and C-terminal TPX2 conserved domain, among others. The first plant TPX2-like protein, WAVE-DAMPENED2, was identified in Arabidopsis as a dominant mutation responsible for reducing the waviness of roots grown on slanted agar plates. Each plant genome encodes at least one ‘canonical’ protein with all TPX2 domains and a family of proteins (20 in Arabidopsis) that diversified to contain only some of the domains. Although all plant TPX2-family proteins to date bind microtubules, they function in distinct processes such as cell division, regulation of hypocotyl cell elongation by hormones and light signals, vascular development, or abiotic stress tolerance. Consequently, their expression patterns, regulation, and functions have diverged considerably. Here we summarize the current body of knowledge surrounding plant TPX2-family proteins.  more » « less
Award ID(s):
1751204
NSF-PAR ID:
10208056
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Murray, James
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cell walls are at the front line of interactions between walled-organisms and their environment. They support cell expansion, ensure cell integrity and, for multicellular organisms such as plants, they provide cell adherence, support cell shape morphogenesis and mediate cell–cell communication. Wall-sensing, detecting perturbations in the wall and signaling the cell to respond accordingly, is crucial for growth and survival. In recent years, plant signaling research has suggested that a large family of receptor-like kinases (RLKs) could function as wall sensors partly because their extracellular domains show homology with malectin, a diglucose binding protein from the endoplasmic reticulum of animal cells. Studies of several malectin/malectin-like (M/ML) domain-containing RLKs (M/MLD-RLKs) from the model plant Arabidopsis thaliana have revealed an impressive array of biological roles, controlling growth, reproduction and stress responses, processes that in various ways rely on or affect the cell wall. Malectin homologous sequences are widespread across biological kingdoms, but plants have uniquely evolved a highly expanded family of proteins with ML domains embedded within various protein contexts. Here, we present an overview on proteins with malectin homologous sequences in different kingdoms, discuss the chromosomal organization of Arabidopsis M/MLD-RLKs and the phylogenetic relationship between these proteins from several model and crop species. We also discuss briefly the molecular networks that enable the diverse biological roles served by M/MLD-RLKs studied thus far. 
    more » « less
  2. null (Ed.)
    Abstract Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains. 
    more » « less
  3. BACKGROUND Diverse organisms, from archaea and bacteria to plants and humans, use receptor systems to recognize both pathogens and dangerous self-derived or environmentally derived stimuli. These intricate, well-coordinated immune systems, composed of innate and adaptive components, ensure host survival. In the late 20th century, researchers identified the Toll/interleukin-1/resistance gene (TIR) domain as an evolutionarily conserved component of animal and plant innate immune systems. Today, TIR-domain proteins are known to be broadly distributed across the tree of life. The TIR domain was first recognized as an adaptor for the assembly of macromolecular signaling complexes in mammalian innate immune pathways. Work on axon degeneration in animals—as well as on plant, archaeal, and bacterial immune systems—has uncovered additional enzymatic activities for TIR domains. ADVANCES Mammalian axons initiate a self-destruct program upon injury and during disease that is mediated by the sterile alpha and TIR motif containing 1 (SARM1) protein. The SARM1 TIR domain enzymatically consumes the essential metabolic cofactor nicotinamide adenine dinucleotide (NAD + ) to promote axonal death. Identification of the SARM1 NAD + -consuming enzyme (NADase) revealed that TIR domains can function as enzymes. Given the evolutionary conservation of TIR domains, studies investigated whether the SARM1 TIR NADase was also conserved. Indeed, bacteria, archaea, and plant TIR domains possess NADase activity. In prokaryotes, TIR NADase activity is found in an ancient antiphage immune system. In plants, identification of TIR NADase activity and linkage of TIR enzymatic products to downstream signaling components addressed the question of how nucleotide-binding, leucine-rich repeat (NLR) receptors trigger hypersensitive cell death during an immune response. Studies in plants show that their TIR domains can cleave nucleic acids and possess 2′,3′ cyclic adenosine monophosphate (2′,3′-cAMP) and 2′,3′ cyclic guanosine monophosphate (2′,3′-cGMP) synthetase activity that aids cell death programs in plant innate immunity. Thus, TIR domains constitute an ancient family of enzymes that are activated in immune and cell death pathways. OUTLOOK The discovery of TIR-domain enzyme activities carries implications for innate immunity and neurodegeneration. The identification of the SARM1 NADase defined a drug target for a wide number of neurodegenerative diseases that is being exploited in both preclinical and clinical studies. Hyperactive mutations in the SARM1 NADase have been discovered in amyotrophic lateral sclerosis (ALS) patients. Future work will seek to clarify the contribution of the SARM1 axon degeneration pathway to ALS pathogenesis. NAD + biology influences cellular processes from metabolism to DNA repair to aging. How TIR enzymes influence the NAD + metabolome and its associated pathways in bacteria, archaea, plants, and animals will be an exciting area for upcoming investigation. The discovery of the diversity of TIR enzymatic products is revealing signaling pathways across kingdoms. Discovery of TIR enzymatic function in plants and animals may yet inspire studies of enzymatic functions for Toll-like receptors in animals. We anticipate that cross-kingdom studies of TIR-domain function will guide interventions that will span the tree of life, from treating human neurodegenerative disorders and bacterial infections to preventing plant diseases. Conserved TIR-domain enzymatic activity. TIR-domain proteins from prokaryotes and eukaryotes cleave NAD + into nicotinamide (Nam), ADP-ribose (ADPR), cyclic ADP-ribose (cADPR), isomers of cyclic ADP-ribose (2′ or 3′cADPR), and related molecules [e.g., phosphoribosyl adenosine monophosphate (pRib-AMP)]. Plant TIR domains also possess a nuclease activity, can degrade DNA and RNA, and can function as a 2′,3′-cAMP or 2′,3′-cGMP synthetase. TIR enzymatic activity drives cell death and immune pathways across kingdoms. TIR activity can kill cells directly through NAD + depletion or indirectly using enzymatic products as signal molecules. The representative TIR domain structure shown here is Protein Data Bank ID 6O0Q. EDS1, enhanced disease susceptibility 1; ThsA, Thoeris A. 
    more » « less
  4. Abstract Plant disease resistance is a complex process that is maintained in an intricate balance with development. Increasing evidence indicates the importance of posttranscriptional regulation of plant defense by RNA binding proteins. In a genetic screen for suppressors of Arabidopsis (Arabidopsis thaliana) accelerated cell death 6-1 (acd6-1), a small constitutive defense mutant whose defense level is grossly in a reverse proportion to plant size, we identified an allele of the canonical flowering regulatory gene FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) encoding a putative protein with triple K homology (KH) repeats. The KH repeat is an ancient RNA binding motif found in proteins from diverse organisms. The relevance of KH-domain proteins in pathogen resistance is largely unexplored. In addition to late flowering, the flk mutants exhibited decreased resistance to the bacterial pathogen Pseudomonas syringae and increased resistance to the necrotrophic fungal pathogen Botrytis cinerea. We further found that the flk mutations compromised basal defense and defense signaling mediated by salicylic acid (SA). Mutant analysis revealed complex genetic interactions between FLK and several major SA pathway genes. RNA-seq data showed that FLK regulates expression abundance of some major defense- and development-related genes as well as alternative splicing of a number of genes. Among the genes affected by FLK is ACD6, whose transcripts had increased intron retentions influenced by the flk mutations. Thus, this study provides mechanistic support for flk suppression of acd6-1 and establishes that FLK is a multifunctional gene involved in regulating pathogen defense and development of plants. 
    more » « less
  5. Pseudokinases are thought to lack phosphotransfer activity due to altered canonical catalytic residues within their kinase domain. However, a subset of pseudokinases maintain activity through atypical phosphotransfer mechanisms. The Arabidopsis ILK1 is a pseudokinase from the Raf-like MAP3K family and is the only known plant pseudokinase with confirmed protein kinase activity. ILK1 activity promotes disease resistance and molecular pattern-induced root growth inhibition through its stabilization of the HAK5 potassium transporter with the calmodulin-like protein CML9. ILK1 also has a kinase-independent function in salt stress suggesting that it interacts with additional proteins. We determined that members of the ILK subfamily are the sole pseudokinases within the Raf-like MAP3K family and identified 179 novel putative ILK1 protein interactors. We also identified 70 novel peptide targets for ILK1, the majority of which were phosphorylated in the presence of Mn 2+ instead of Mg 2+ in line with modifications in ILK1’s DFG cofactor binding domain. Overall, the ILK1-targeted or interacting proteins included diverse protein types including transporters (HAK5, STP1), protein kinases (MEKK1, MEKK3), and a cytokinin receptor (AHK2). The expression of 31 genes encoding putative ILK1-interacting or phosphorylated proteins, including AHK2, were altered in the root and shoot in response to molecular patterns suggesting a role for these genes in immunity. We describe a potential role for ILK1 interactors in the context of cation-dependent immune signaling, highlighting the importance of K + in MAMP responses. This work further supports the notion that ILK1 is an atypical kinase with an unusual cofactor dependence that may interact with multiple proteins in the cell. 
    more » « less