Applied macroeconomists frequently use impulse response estimators motivated by linear models. We study whether the estimands of such procedures have a causal interpretation when the data generating process is in fact nonlinear. We show that vector autoregressions and linear local projections onto observed shocks or proxies identify weighted averages of causal effects regardless of the extent of nonlinearities. By contrast, identification approaches that exploit heteroscedasticity or non-Gaussianity of latent shocks are highly sensitive to departures from linearity. Our analysis is based on new results on the identification of marginal treatment effects through weighted regressions, which may also be of interest to researchers outside macroeconomics.
more »
« less
This content will become publicly available on November 1, 2026
Beyond the Diagonal Reference Model: Critiques and New Directions in the Analysis of Mobility Effects
Over the past decade there has been a striking increase in the number of quantitative studies examining the effects of social mobility, with almost all based on the diagonal reference model (DRM). We make four main contributions to this rapidly expanding literature. First, we show that under plausible values of mobility effects, the DRM will, in many cases, implicitly force the underlying mobility linear effect toward zero. In addition, we show both mathematically and through simulations that the mobility effects estimated by the DRM are sensitive to the size and sign of the origin and destination linear effects, often in ways that are unlikely to be intuitive to applied researchers. This finding clarifies why, contrary to expectations, applied researchers have generally found mixed evidence of mobility effects. Second, we generalize the identification problem of conventional mobility effect models by showing that the DRM and related methods can be viewed as special cases of a bounding analysis, where identification is achieved by invoking extremely strong assumptions. Finally, and importantly, we present a new framework for the analysis of mobility tables based on the identification and estimation of joint parameter sets, introducing what we call the structural and dynamic inequality model. We show that this model is fully identified, relies on much weaker assumptions than conventional models of mobility effects, and can be treated both as a descriptive model and, if additional assumptions are invoked, as a causal model. We conclude with an agenda for further research on the consequences of socioeconomic mobility.
more »
« less
- Award ID(s):
- 1948310
- PAR ID:
- 10649358
- Publisher / Repository:
- Sage
- Date Published:
- Journal Name:
- Sociological Methods & Research
- Volume:
- 54
- Issue:
- 4
- ISSN:
- 0049-1241
- Page Range / eLocation ID:
- 1339 to 1395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cassio de Campos; Marloes H. Maathuis (Ed.)When data contains measurement errors, it is necessary to make modeling assumptions relating the error-prone measurements to the unobserved true values. Work on measurement error has largely focused on models that fully identify the parameter of interest. As a result, many practically useful models that result in bounds on the target parameter -- known as partial identification -- have been neglected. In this work, we present a method for partial identification in a class of measurement error models involving discrete variables. We focus on models that impose linear constraints on the tar- get parameter, allowing us to compute partial identification bounds using off-the-shelf LP solvers. We show how several common measurement error assumptions can be composed with an extended class of instrumental variable-type models to create such linear constraint sets. We further show how this approach can be used to bound causal parameters, such as the average treatment effect, when treatment or outcome variables are measured with error. Using data from the Oregon Health Insurance Experiment, we apply this method to estimate bounds on the effect Medicaid enrollment has on depression when depression is measured with error.more » « less
-
Human mobility models typically produce mobility data to capture human mobility patterns individually or collectively based on real-world observations or assumptions, which are essential for many use cases in research and practice, e.g., mobile networking, autonomous driving, urban planning, and epidemic control. However, most existing mobility models suffer from practical issues like unknown accuracy and uncertain parameters in new use cases because they are normally designed and verified based on a particular use case (e.g., mobile phones, taxis, or mobile payments). This causes significant challenges for researchers when they try to select a representative human mobility model with appropriate parameters for new use cases. In this paper, we introduce a MObility VERification framework called MOVER to systematically measure the performance of a set of representative mobility models including both theoretical and empirical models based on a diverse set of use cases with various measures. Based on a taxonomy built upon spatial granularity and temporal continuity, we selected four representative mobility use cases (e.g., the vehicle tracking system, the camera-based system, the mobile payment system, and the cellular network system) to verify the generalizability of the state-of-the-art human mobility models. MOVER methodically characterizes the accuracy of five different mobility models in these four use cases based on a comprehensive set of mobility measures and provide two key lessons learned: (i) For the collective level measures, the finer spatial granularity of the user cases, the better generalization of the theoretical models; (ii) For the individual-level measures, the lower periodic temporal continuity of the user cases, the theoretical models typically generalize better than the empirical models. The verification results can help the research community to select appropriate mobility models and parameters in different use cases.more » « less
-
High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.more » « less
-
There are many kinds of exogeneity assumptions. How should researchers choose among them? When exogeneity is imposed on an unobservable like a potential outcome, we argue that the form of exogeneity should be chosen based on the kind of selection on unobservables it allows. Consequently, researchers can assess the plausibility of any exogeneity assumption by studying the distributions of treatment given the unobservables that are consistent with that assumption. We use this approach to study two common exogeneity assumptions: quantile and mean independence. We show that both assumptions require a kind of nonmonotonic relationship between treatment and the potential outcomes. We discuss how to assess the plausibility of this kind of treatment selection. We also show how to define a new and weaker version of quantile independence that allows for monotonic selection on unobservables. We then show the implications of the choice of exogeneity assumption for identification. We apply these results in an empirical illustration of the effect of child soldiering on wages.more » « less
An official website of the United States government
