skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Forecasting Missouri riverflow with SARIMA models: A data-driven framework for adaptive water resourcemanagement
A statistical water balance and time series modeling framework is developed to analyze and forecast the Missouri River’s monthly flow at Bismarck from 1954 to 2024. Integrating traditional hydrological components precipitation, evaporation, upstream inflow, tributaries with ARIMA and SARIMA models enable detection of long-term and seasonal trends. Model fit is rigorously assessed by AIC, AICc, BIC, Nash-Sutcliffe Efficiency, and visual diagnostics with credible intervals. Stationarity is evaluated through ADF and KPSS tests to guide model selection. The final SARIMA framework, incorporating Box-Cox transformation and outlier adjustment, produces reliable forecasts with quantified uncertainty for both typical and extreme hydrologic conditions. These forecasts are vital for river management and policy, demonstrating how statistical rigor and visual assessment underpin adaptive water management strategies.  more » « less
Award ID(s):
1839895
PAR ID:
10649594
Author(s) / Creator(s):
Publisher / Repository:
International Journal of Statistics and Applied Mathematics
Date Published:
Journal Name:
International Journal of Statistics and Applied Mathematics
Volume:
10
Issue:
8
ISSN:
2456-1452
Page Range / eLocation ID:
147 to 159
Subject(s) / Keyword(s):
Missouri river, flow forecasting, SARIMA, ARIMA, time series modeling, water balance, hydrological modeling, river discharge, seasonal trends, climate impact, ecosystem management, statistical forecasting, stationarity tests, reservoir operations, flood risk, water resource planning, uncertainty quantification, validation, upscaling, upscaling, environmental monitoring
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Uncertainty attribution in water supply forecasting is crucial to improve forecast skill and increase confidence in seasonal water management planning. We develop a framework to quantify fractional forecast uncertainty and partition it between (1) snowpack quantification methods, (2) variability in post‐forecast precipitation, and (3) runoff model errors. We demonstrate the uncertainty framework with statistical runoff models in the upper Tuolumne and Merced River basins (California, USA) using snow observations at two endmember spatial resolutions: a simple snow pillow index and full‐catchment snow water equivalent (SWE) maps at 50 m resolution from the Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear decrease in the skill of statistical water supply forecasts during warm snow droughts, when a low fraction of winter precipitation remains as SWE. Forecast skill similarly decreases during dry snow droughts, when winter precipitation is low. During a shift away from snow‐dominance, the uncertainty of forecasts using snow pillow data increases about 1.9 times faster than analogous forecasts using full‐catchment SWE maps in the study area. Replacing the snow pillow index with full‐catchment SWE data reduces statistical forecast uncertainty by 39% on average across all tested climate conditions. Attributing water supply forecast uncertainty to reducible error sources reveals opportunities to improve forecast reliability in a warmer future climate. 
    more » « less
  2. Abstract Phytoplankton blooms create harmful toxins, scums, and taste and odor compounds and thus pose a major risk to drinking water safety. Climate and land use change are increasing the frequency and severity of blooms, motivating the development of new approaches for preemptive, rather than reactive, water management. While several real-time phytoplankton forecasts have been developed to date, none are both automated and quantify uncertainty in their predictions, which is critical for manager use. In response to this need, we outline a framework for developing the first automated, real-time lake phytoplankton forecasting system that quantifies uncertainty, thereby enabling managers to adapt operations and mitigate blooms. Implementation of this system calls for new, integrated ecosystem and statistical models; automated cyberinfrastructure; effective decision support tools; and training for forecasters and decision makers. We provide a research agenda for the creation of this system, as well as recommendations for developing real-time phytoplankton forecasts to support management. 
    more » « less
  3. As anthropogenic eutrophication and the associated increase of cyanobacteria continue to plague inland waterbodies, local officials are seeking novel methods to proactively manage water resources. Cyanobacteria are of particular concern to health officials due to their ability to produce dangerous hepatotoxins and neurotoxins, which can threaten waterbodies for recreational and drinking-water purposes. Presently, however, there is no cyanobacteria outlook that can provide advance warning of a potential threat at the seasonal time scale. In this study, a statistical model is developed utilizing local and global scale season-ahead hydroclimatic predictors to evaluate the potential for informative cyanobacteria biomass and associated beach closure forecasts across the June–August season for a eutrophic lake in Wisconsin (United States). This model is developed as part of a subseasonal to seasonal cyanobacteria forecasting system to optimize lake management across the peak cyanobacteria season. Model skill is significant in comparison to June–August cyanobacteria observations (Pearson correlation coefficient = 0.62, Heidke skill score = 0.38). The modeling framework proposed here demonstrates encouraging prediction skill and offers the possibility of advanced beach management applications. 
    more » « less
  4. Today’s data plane network telemetry systems en- able network operators to capture fine-grained data streams of many different network traffic features (e.g., loss or flow arrival rate) at line rate. This capability facilitates data-driven approaches to network management and motivates leveraging either statistical or machine learning models (e.g., for forecasting network data streams) for automating various network management tasks. However, current studies on network automation- related problems are in general not concerned with issues that arise when deploying these models in practice (e.g., (re)training overhead). In this paper, we examine various training-related aspects that affect the accuracy and overhead (and thus feasibility) of both LSTM and SARIMA, two popular types of models used for forecasting real-world network data streams in telemetry systems. In particular, we study the impact of the size, choice, and recency of the training data on accuracy and overhead and explore using separate models for different segments of a data stream (e.g., per-hour models). Using two real-world data streams, we show that (i) per-hour LSTM models exhibit high accuracy after training with only 24 hours of data, (ii) the accuracy of LSTM models does not depend on the recency of the training data (i.e., no frequent (re)training is required), (iii) SARIMA models can have comparable or lower accuracy than LSTM models, and (iv) certain segments of the data streams are inherently more challenging to forecast than others. While the specific findings reported in this paper depend on the considered data streams and specified models, we argue that irrespective of the data streams at hand, a similar examination of training-related aspects is needed before deploying any statistical or machine learning model in practice. 
    more » « less
  5. null (Ed.)
    The use of hydro-meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro-meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast-informed decision-making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium-range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space-time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis. 
    more » « less