Abstract AimTropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure. LocationTropical rainforests worldwide. Time periodPresent. Major taxa studiedGround‐dwelling and ground‐visiting mammals and birds. MethodsWe used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure. ResultsPhylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies. Main conclusionsOur results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change.
more »
« less
Regional Occupancy Is Negatively Related to Richness Across Time and Space
ABSTRACT AimBiological diversity is shaped by processes occurring at different spatial and temporal scales. However, the direct influence of the spatial and temporal scale on patterns of occupancy is still understudied. Today, occupancy is often negatively correlated with species richness, but it is unknown whether this relationship is scale dependent and consistent through time. Here, we use datasets of contemporary and paleontological communities to explore the occupancy‐richness relationship across space and time, examining how scale influences this relationship. LocationVarying spatial extents with global coverage. TimeVaries from 7 mya to 2021 CE. Taxaforaminifera, mammals, birds, fish, and plants. MethodsWe gathered datasets spanning different spatial, temporal, and taxonomic extents. We binned each dataset into distinct time periods and spatially subsampled them into regional pools of varying sizes. We calculated regional occupancy and richness for each pool, measuring the strength of the relationship between the two. Using linear mixed models, we related the occupancy‐richness relationship to the size of the regional pools, overall species richness, and climatic changes through time. ResultsWe observed nearly ubiquitous negative occupancy‐richness relationships across taxa, spatial scale, and time. The size of the regional pools and time bins had no consistent effects on the strength of the relationship, but the strength of the negative relationship varied substantially among taxa, with foraminifera and North American pollen showing weaker relationships than mammals and birds. Changes in this relationship through time were not driven by climatic perturbations but by the species richness observed across all regional pools. ConclusionsPatterns of regional richness and occupancy are consistently negatively related and independent of spatial and temporal scale and of direct climatic changes. However, differences in the ecology of species (e.g., dispersal ability) and changes in biodiversity and community composition through time may cause fluctuations in the strength of the occupancy‐richness relationship.
more »
« less
- Award ID(s):
- 2305234
- PAR ID:
- 10649636
- Publisher / Repository:
- Global Ecology and Biogeography
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 1466-822X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Martins, Ines (Ed.)Abstract MotivationBiodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region. Main Types of Variable ContainedEcological, life‐history, morphological and geographical traits. Spatial Location and GrainNeotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions. Time Period and GrainIUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023. Major Taxa and Level of MeasurementClasses Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals). Software Format.csv; R.more » « less
-
Abstract The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.more » « less
-
ABSTRACT MotivationSNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns. Main Types of Variables ContainedSNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata. Spatial Location and GrainData were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems. Time Period and GrainData were collected between 1st August and 29th December each year from 2019 to 2023. Major Taxa and Level of MeasurementThe dataset includes a wide range of taxa but is primarily focused on medium to large mammals. Software FormatSNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform.more » « less
-
ABSTRACT The Importance of the Regional Species PoolThe regional species pool—the set of species capable of entering a local community—is a foundational concept for understanding ecological processes that occur between local and extensive (biogeographic) spatial scales. However, the lack of precise definitions for the regional species pool, coupled with limited research into the dynamics of regional biodiversity, has impeded the development of a comprehensive framework to explain the mechanisms shaping these pools. Processes Governing Regional Species PoolsAlthough ecological processes at local and extensive scales are relatively well understood, the mechanisms shaping regional biota remain less clear. Regional species pools are likely shaped by a unique set of processes that often overlap minimally with those operating at local or extensive scales. Despite their significance, our understanding of the specific mechanisms driving the dynamics of regional species pools remains incomplete. The Need for a Theory of Regional Species PoolsWe argue that it is essential to prioritise the study of the regional species pool for two reasons. First, the regional species pool bridges spatial and temporal scales from ecological dynamics in landscapes to the long‐term processes shaping the biotas of entire biogeographic provinces. As such, understanding the dynamics of species pools addresses fundamental questions about the origin, maintenance, and dynamics of biodiversity. Second, effective biodiversity conservation in the Anthropocene hinges on understanding the processes that operate at regional scales.more » « less
An official website of the United States government

