skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 7, 2026

Title: Analysis of rad-51 separation of function allele suggests divergence of the synthesis-dependent strand annealing and double Holliday junction pathways prior to RAD-51 filament disassembly
Abstract DNA double-strand breaks (DSBs) are formed in meiosis, so their repair in the homologous recombination (HR) pathway will lead to crossover formation, which is essential for successful chromosome segregation. HR contains 2 subpathways: synthesis-dependent strand annealing (SDSA) that creates noncrossover and double Holliday junction (dHJ) that generates crossovers. RAD-51 is a protein essential to the formation of all products of HR, as it assembles on the processed DSB, allowing the invasion of the single-stranded DNA into a region of homology. RAD-51 is removed by RAD-54.L after invasion to allow for repair to occur. Here, we investigate a separation of function allele of rad-51, rad-51::FLAG, as compared to 2 other RAD-51 alleles: rad-51::degron and GFP::rad-51. rad-51::FLAG displays slowed repair kinetics, resulting in an accumulation of RAD-51 foci. rad-51::FLAG worms also activate the DSB checkpoint, but to a less extant than that of rad-51 null mutants. In a proximity ligation assay, RAD-54.L and RAD-51 show enriched colocalization in rad-51::FLAG germlines (but not in rad-51::degron), consistent with stalling at the strand invasion step in HR. The defects in RAD-51 disassembly in rad-51::FLAG mutants lead to formation of chromosomal fragments, similar in their magnitude to ones observed in rad-51 or rad-54.L null mutants. However, rad-51::FLAG mutants (unlike a rad-51 null, GFP::rad-51 or rad-54.L null mutants) displayed no defects in the formation of crossover-designated sites (via GFP::COSA-1 localization). Given that rad-51::FLAG worms show checkpoint activation and chromosomal fragments, these results suggest that crossover repair concludes normally, while the noncrossover pathway is perturbed. This is strikingly different from rad-51::degron and GFP::rad-51 strains, which are proficient or deficient in both pathways, respectively. These results suggest that noncrossovers vs crossovers have distinct recombination intermediates and diverge prior to RAD-51 disassembly.  more » « less
Award ID(s):
2027955
PAR ID:
10649709
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Engebrecht, J
Publisher / Repository:
GENETICS, Oxford academic press
Date Published:
Journal Name:
GENETICS
Volume:
230
Issue:
2
ISSN:
1943-2631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Keeney, Scott (Ed.)
    In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker’s yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect inexo1null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels ofexo1DNA-binding mutants to levels that approached theexo1null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution. 
    more » « less
  2. Abstract Double-strand breaks (DSBs) in DNA are challenging to repair. Cells employ at least three DSB-repair mechanisms, with a preference for non-homologous end joining (NHEJ) over homologous recombination (HR) and microhomology-mediated end joining (MMEJ). While most eukaryotic DNA is transcribed into RNA, providing complementary genetic information, much remains unknown about the direct impact of RNA on DSB-repair outcomes and its role in DSB-repair via end joining. Here, we show that both sense and antisense-transcript RNAs impact DSB repair in a sequence-specific manner in wild-type human and yeast cells. Depending on its sequence complementarity with the broken DNA ends, a transcript RNA can promote repair of a DSB or a double-strand gap in its DNA gene via NHEJ or MMEJ, independently from DNA synthesis. The results demonstrate a role of transcript RNA in directing the way DSBs are repaired in DNA, suggesting that RNA may directly modulate genome stability and evolution. 
    more » « less
  3. Pericentromeric heterochromatin is mostly composed of repetitive DNA sequences prone to aberrant recombination. Cells have developed highly specialized mechanisms to enable ‘safe’ homologous recombination (HR) repair while preventing aberrant recombination in this domain. Understanding heterochromatin repair responses is essential to understanding the critical mechanisms responsible for genome integrity and tumor suppression. Here, we review the tools, approaches, and methods currently available to investigate double-strand break (DSB) repair in pericentromeric regions, and also suggest how technologies recently developed for euchromatin repair studies can be adapted to characterize responses in heterochromatin. With this ever-growing toolkit, we are witnessing exciting progress in our understanding of how the ‘dark matter’ of the genome is repaired, greatly improving our understanding of genome stability mechanisms. 
    more » « less
  4. The plant-specific RNA Polymerase V (Pol V) plays a key role in gene silencing, but its role in repair of double stranded DNA breaks is unclear. Excision of the transposable element mPing creates double stranded breaks that are repaired by NHEJ. We measured mPing excision site repair in multiple DNA methylation mutants including pol V using an mPing : GFP reporter. Two independent mutant alleles of pol V showed less GFP expression, indicating that the Pol V protein plays a role in excision site repair. Sequence analysis of the pol V excision sites indicated an elevated rate of large deletions consistent with less efficient repair. These results clarify the role of Pol V, but not other RNA-directed DNA methylation proteins (Pol IV) or maintenance DNA methylation pathways ( MET1 ), in the repair of double-strand DNA breaks. 
    more » « less
  5. Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable ‘safe’ repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR-white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin. 
    more » « less