skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 5, 2026

Title: Realistic coupling enables flexible macroscopic traveling waves in the mouse cortex
Traveling waves are ubiquitous in neuronal systems across different spatial scales. While microscopic and mesoscopic waves are relatively well studied, the mechanisms underlying the emergence of macroscopic traveling waves remain less understood. Here, by modeling the mouse cortex using spatial transcriptomic and connectivity data, we show that realistic cortical connectivity can generate a significantly higher level of macroscopic traveling waves than local and uniform connectivity. By quantifying the traveling waves in the 3-D domain, we discovered that the level of macroscopic traveling waves depends not only on the network connectivity but also non-monotonically depends on the coupling strength between neurons in the network. We also found that slow oscillations (0.5 - 4 Hz) are more likely to form large-scale, macroscopic traveling waves than other faster oscillations in the network with realistic connectivity. Together, our work shows how flexible macroscopic traveling waves can emerge in the mouse cortex and offers a computational framework to further study traveling waves in the mouse brain at the single-cell level.  more » « less
Award ID(s):
2052499
PAR ID:
10649712
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The insula plays a fundamental role in a wide range of adaptive human behaviors, but its electrophysiological dynamics are poorly understood. Here, we used human intracranial electroencephalographic recordings to investigate the electrophysiological properties and hierarchical organization of spontaneous neuronal oscillations within the insula. We analyzed the neuronal oscillations of the insula directly and found that rhythms in the theta and beta frequency oscillations are widespread and spontaneously present. These oscillations are largely organized along the anterior–posterior (AP) axis of the insula. Both the left and right insula showed anterior-­to-posterior decreasing gradients for the power of oscillations in the beta frequency band. The left insula also showed a posterior-to-anterior decreasing frequency gradient and an anterior-to-posterior decreasing power gradient in the theta frequency band. In addition to measuring the power of these oscillations, we also examined the phase of these signals across simultaneous recording channels and found that the insula oscillations in the theta and beta bands are traveling waves. The strength of the traveling waves in each frequency was positively correlated with the amplitude of each oscillation. However, the theta and beta traveling waves were uncoupled to each other in terms of phase and amplitude, which suggested that insular traveling waves in the theta and beta bands operate independently. Our findings provide new insights into the spatiotemporal dynamics and hierarchical organization of neuronal oscillations within the insula, which, given its rich connectivity with widespread cortical regions, indicates that oscillations and traveling waves have an important role in intrainsular and interinsular communications. 
    more » « less
  2. Abstract Cortical propagating waves have recently attracted significant attention by the neuroscience community. These travelling waves have been suggested to coordinate different brain areas and play roles in assisting neural plasticity and learning. However, it is extremely challenging to record them with very fine spatial scales over large areas to investigate their effect on neural dynamics or network connectivity changes. In this work, we employ high-density porous graphene microelectrode arrays fabricated using laser pyrolysis on flexible substrates to study the functional network connectivity during cortical propagating waves. The low-impedance porous graphene arrays are used to record cortical potentials during theta oscillations and drug-induced seizuresin vivo. Spatiotemporal analysis on the neural recordings reveal that theta oscillations and epileptiform activities have distinct characteristics in terms of both synchronization and resulting propagating wave patterns. To investigate the network connectivity during the propagating waves, we perform network analysis. The results show that the propagating waves are consistent with the functional connectivity changes in the neural circuits, suggesting that the underlying network states are reflected by the cortical potential propagation patterns. 
    more » « less
  3. There is a rise in the study of functional connectivity among various cortical regions and investigations to uncover causal links between a stimulus and the corresponding neural dynamics through electrophysiological imaging of the human brain. Animal model that exhibit simplistic representations of such networks open a doorway for such investigations and are gaining rapid popularity. In this study, we investigate and compare resting state network and auditory stimulus related activity with minimal invasive technology along computational spectral analysis on a C57/BL6 based mouse model. Somatosensory, motor and visual cortex are observed to be highly active and significantly correlated (p-value<0.05). Moreover, given the spatial limitation due to small size of the mouse head, we also describe a low-cost and effective fabrication process for the mouse EEG Polyimide Based Microelectrodes (PBM) array. The easy-to-implement fabrication process involves transfer of the pattern on a copper layer of the Kapton film followed by gold electroplating and application of insulation paint. Acoustic stimulation is done by using tube extensions for avoiding electrical coupling to EEG signals. Unlike multi-electrode array type of invasive methods that are local to a cortical region, the methods established in this study can be used for examining functional connectivity analysis, neural dynamics and cortical response at a global level. 
    more » « less
  4. Abstract. Atmospheric gravity waves and traveling ionospheric disturbances can be observed in the neutral atmosphere and the ionosphere at a wide range of spatial and temporal scales. Especially at medium scales, these oscillations are often not resolved in general circulation models and are parameterized. We show that ionospheric disturbances forced by upward-propagating atmospheric gravity waves can be simultaneously observed with the EISCAT very high frequency incoherent scatter radar and the Nordic Meteor Radar Cluster. From combined multi-static measurements, both vertical and horizontal wave parameters can be determined by applying a specially developed Fourier filter analysis method. This method is demonstrated using the example of a strongly pronounced wave mode that occurred during the EISCAT experiment on 7 July 2020. Leveraging the developed technique, we show that the wave characteristics of traveling ionospheric disturbances are notably impacted by the fall transition of the mesosphere and lower thermosphere. We also demonstrate the application of using the determined wave parameters to infer the thermospheric neutral wind velocities. Applying the dissipative anelastic gravity wave dispersion relation, we obtain vertical wind profiles in the lower thermosphere. 
    more » « less
  5. Abstract Recent analyses have found waves of neural activity traveling across entire visual cortical areas in awake animals. These traveling waves modulate excitability of local networks and perceptual sensitivity. The general computational role for these spatiotemporal patterns in the visual system, however, remains unclear. Here, we hypothesize that traveling waves endow the brain with the capacity to predict complex and naturalistic visual inputs. We present a new network model whose connections can be rapidly and efficiently trained to predict natural movies. After training, a few input frames from a movie trigger complex wave patterns that drive accurate predictions many frames into the future, solely from the network’s connections. When the recurrent connections that drive waves are randomly shuffled, both traveling waves and the ability to predict are eliminated. These results show traveling waves could play an essential computational role in the visual system by embedding continuous spatiotemporal structures over spatial maps. 
    more » « less