In multimodal machine learning, effectively addressing the missing modality scenario is crucial for improving performance in downstream tasks such as in medical contexts where data may be incomplete. Although some attempts have been made to retrieve embeddings for missing modalities, two main bottlenecks remain: (1) the need to consider both intra- and inter-modal context, and (2) the cost of embedding selection, where embeddings often lack modality-specific knowledge. To address this, the authors propose MoE-Retriever, a novel framework inspired by Sparse Mixture of Experts (SMoE). MoE-Retriever defines a supporting group for intra-modal inputs—samples that commonly lack the target modality—by selecting samples with complementary modality combinations for the target modality. This group is integrated with inter-modal inputs from different modalities of the same sample, establishing both intra- and inter-modal contexts. These inputs are processed by Multi-Head Attention to generate context-aware embeddings, which serve as inputs to the SMoE Router that automatically selects the most relevant experts (embedding candidates). Comprehensive experiments on both medical and general multimodal datasets demonstrate the robustness and generalizability of MoE-Retriever, marking a significant step forward in embedding retrieval methods for incomplete multimodal data.
more »
« less
Jointly Modeling Inter- & Intra-Modality Dependencies for Multi-modal Learning
Supervised multi-modal learning involves mapping multiple modalities to a target label. Previous studies in this field have concentrated on capturing in isolation either the inter-modality dependencies (the relationships between different modalities and the label) or the intra-modality dependencies (the relationships within a single modality and the label). We argue that these conventional approaches that rely solely on either inter- or intra-modality dependencies may not be optimal in general. We view the multi-modal learning problem from the lens of generative models where we consider the target as a source of multiple modalities and the interaction between them. Towards that end, we propose inter- & intra-modality modeling (I2M2) framework, which captures and integrates both the inter- and intra-modality dependencies, leading to more accurate predictions. We evaluate our approach using real-world healthcare and vision-and-language datasets with state-of-the-art models, demonstrating superior performance over traditional methods focusing only on one type of modality dependency.
more »
« less
- Award ID(s):
- 1922658
- PAR ID:
- 10649783
- Publisher / Repository:
- 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Proteins, often represented as multi-modal data of 1D sequences and 2D/3D structures, provide a motivating example for the communities of machine learning and computational biology to advance multi-modal representation learning. Protein language models over sequences and geometric deep learning over structures learn excellent single-modality representations for downstream tasks. It is thus desirable to fuse the single-modality models for better representation learning, but it remains an open question on how to fuse them effectively into multi-modal representation learning with a modest computational cost yet significant downstream performance gain. To answer the question, we propose to make use of separately pretrained single-modality models, integrate them in parallel connections, and continuously pretrain them end-to-end under the framework of multimodal contrastive learning. The technical challenge is to construct views for both intra- and inter-modality contrasts while addressing the heterogeneity of various modalities, particularly various levels of semantic robustness. We address the challenge by using domain knowledge of protein homology to inform the design of positive views, specifically protein classifications of families (based on similarities in sequences) and superfamilies (based on similarities in structures). We also assess the use of such views compared to, together with, and composed to other positive views such as identity and cropping. Extensive experiments on enzyme classification and protein function prediction benchmarks demonstrate the potential of domain-informed view construction and combination in multi-modal contrastive learningmore » « less
-
In multimodal machine learning, effectively addressing the missing modality scenario is crucial for improving performance in downstream tasks such as in medical contexts where data may be incomplete. Although some attempts have been made to effectively retrieve embeddings for missing modalities, two main bottlenecks remain: the consideration of both intra- and inter-modal context, and the cost of embedding selection, where embeddings often lack modality-specific knowledge. In response, we propose MoE-Retriever, a novel framework inspired by the design principles of Sparse Mixture of Experts (SMoE). First, MoE-Retriever samples the relevant data from modality combinations, using a so-called supporting group to construct intra-modal inputs while incorporating inter-modal inputs. These inputs are then processed by Multi-Head Attention, after which the SMoE Router automatically selects the most relevant expert, i.e., the embedding candidate to be retrieved. Comprehensive experiments on both medical and general multimodal datasets demonstrate the robustness and generalizability of MoE-Retriever, marking a significant step forward in embedding retrieval methods for incomplete multimodal data.more » « less
-
Learning multimodal representations is a fundamentally complex research problem due to the presence of multiple heterogeneous sources of information. Although the presence of multiple modalities provides additional valuable information, there are two key challenges to address when learning from multimodal data: 1) models must learn the complex intra-modal and cross-modal interactions for prediction and 2) models must be robust to unexpected missing or noisy modalities during testing. In this paper, we propose to optimize for a joint generative-discriminative objective across multimodal data and labels. We introduce a model that factorizes representations into two sets of independent factors: multimodal discriminative and modality-specific generative factors. Multimodal discriminative factors are shared across all modalities and contain joint multimodal features required for discriminative tasks such as sentiment prediction. Modality-specific generative factors are unique for each modality and contain the information required for generating data. Experimental results show that our model is able to learn meaningful multimodal representations that achieve state-of-the-art or competitive performance on six multimodal datasets. Our model demonstrates flexible generative capabilities by conditioning on independent factors and can reconstruct missing modalities without significantly impacting performance. Lastly, we interpret our factorized representations to understand the interactions that influence multimodal learning.more » « less
-
null (Ed.)Compound-protein pairs dominate FDA-approved drug-target pairs and the prediction of compound-protein affinity and contact (CPAC) could help accelerate drug discovery. In this study we consider proteins as multi-modal data including 1D amino-acid sequences and (sequence-predicted) 2D residue-pair contact maps. We empirically evaluate the embeddings of the two single modalities in their accuracyand generalizability of CPAC prediction (i.e. structure-free interpretable compound-protein affinity prediction). And we rationalize their performances in both challenges of embedding individual modalities and learning generalizable embedding-label relationship. We further propose two models involving cross-modality protein embedding and establish that the one with cross interaction (thus capturing correlations among modalities) outperforms SOTAs and our single modality models in affinity, contact, and binding-site predictions for proteins never seen in the training set.more » « less
An official website of the United States government

