To perform power system monitoring and control using synchrophasor measurements, various dynamic state estimators have been proposed in the literature, including the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). However, they are unable to handle system model parameter errors and any type of outliers, precluding them from being adopted for power system real-time applications. In this paper, we develop a robust iterated extended Kalman filter based on the generalized maximum likelihood approach (termed GM-IEKF) for dynamic state estimation. The proposed GM-IEKF can effectively suppress observation and innovation outliers, which may be induced by model parameter gross errors and cyber attacks. We assess its robustness by carrying out extensive simulations on the IEEE 39-bus test system. From the results, we find that the GM-IEKF is able to cope with at least 25% outliers, including in position of leverage.
more »
« less
Adaptive compensation for multi-axial real-time hybrid simulation via nonlinear parameter estimation
For Real-time hybrid simulation (RTHS) to be stable and accurate, it is essential to address the time desynchronization issue between the numerical and physical substructures. Desynchronization is primarily caused by time delays, inherent dynamics of the control plant, system uncertainties, and noises. While existing adaptive compensators have shown effective tracking performance in single-input single-output (SISO) RTHS, their effectiveness in multi-input multi-output (MIMO) RTHS has not been fully demonstrated. MIMO-RTHS presents additional challenges due to its larger solution space, and significant dynamic coupling between actuators. To address these challenges, this study introduces an adaptive compensation framework for MIMO-RTHS. The proposed framework utilizes a control law based on the inverse dynamics of the control plant, incorporating real-time adaptive parameter updates through Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) methods. Both the transfer function (TF) and discrete-time state-space (SS) models of the plant are employed in distinct parameter estimation cases. The performance of the proposed compensation is validated through a multi-axial RTHS (maRTHS) benchmark problem. Extensive simulations on the maRTHS incorporating various earthquake inputs, sensor noise, and model uncertainties, demonstrated an excellent tracking performance and strong robustness across four parameter estimation cases (EKF-TF, UKF-TF, EKF-SS, and UKF-SS). The use of UKF with SS model (UKF-SS) achieved superior performance, effectively managing nonlinearities and noise without requiring low-pass filtering.
more »
« less
- Award ID(s):
- 2011423
- PAR ID:
- 10649861
- Publisher / Repository:
- Frontiers in Built Environment
- Date Published:
- Journal Name:
- Frontiers in Built Environment
- Volume:
- 10
- ISSN:
- 2297-3362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Designing robust algorithms in the face of estimation uncertainty is a challenging task. Indeed, controllers seldom consider estimation uncertainty and only rely on the most likely estimated state. Consequently, sudden changes in the environment or the robot’s dynamics can lead to catastrophic behaviors. Leveraging recent results in risk-sensitive optimal control, this paper presents a risk-sensitive Extended Kalman Filter that can adapt its estimation to the control objective, hence allowing safe output-feedback Model Predictive Control (MPC). By taking a pessimistic estimate of the value function resulting from the MPC controller, the filter provides increased robustness to the controller in phases of uncertainty as compared to a standard Extended Kalman Filter (EKF). The filter has the same computational complexity as an EKF and can be used for real-time control. The paper evaluates the risk-sensitive behavior of the proposed filter when used in a nonlinear MPC loop on a planar drone and industrial manipulator in simulation, as well as on an external force estimation task on a real quadruped robot. These experiments demonstrate the ability of the approach to significantly improve performance in face of uncertainties.more » « less
-
The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects.more » « less
-
Abstract: Impairments such as time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of synchronization and poor performance of multi-relay communication systems. Joint estimation of these impairments is necessary in order to correctly decode the received signal at the destination. In this paper, we address spectrally efficient multi-relay transmission scenarios where all the relays simultaneously communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation conditional maximization for joint estimation of multipath channels, Wiener PHNs, and CFOs in decode-and-forward-based multi-relay orthogonal frequency division multiplexing systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator outperforms existing algorithms and its mean square error performance is close to the derived HCRB at different signal-to-noise ratios for different PHN variances. In addition, the combined estimation algorithm and the iterative receiver can significantly improve average bit-error rate (BER) performance compared with existing algorithms. In addition, the BER performance of the proposed system is close to the ideal case of perfect channel impulse responses, PHNs, and CFOs estimation.more » « less
-
Advancing RTHS methods to readily handle multi-dimensional problems has great potential for enabling more advanced testing and synergistically using existing laboratory facilities that have the capacity for such experimentation. However, the high internal coupling between hydraulics actuators and the nonlinear kinematics escalates the complexity of actuator control and boundary condition tracking. To enable researchers in the RTHS community to develop and compare advanced control algorithms, this paper proposes a benchmark control problem for a multi-axial real-time hybrid simulation (maRTHS) and presents its definition and implementation on a steel frame excited by seismic loads at the base. The benchmark problem enables the development and validation of control techniques for tracking both translation and rotation degrees of freedom of a plant that consists of a steel frame, two hydraulic actuators, and a steel coupler with high stiffness that couples the axial displacements of the hydraulic actuators resulting in the required motion of the frame node. In this investigation, the different components of this benchmark were developed, tested, and a set of maRTHS were conducted to demonstrate its feasibility in order to provide a realistic virtual platform. To offer flexibility in the control design process, experimental data for identification purposes, finite element models for the reference structure, numerical, and physical substructure, and plant models with model uncertainties are provided. Also, a sample example of an RTHS design based on a linear quadratic Gaussian controller is included as part of a computational code package, which facilitates the exploration of the tradeoff between robustness and performance of tracking control designs. The goals of this benchmark are to: extend existing control or develop new control techniques; provide a computational tool for investigation of the challenging aspects of maRTHS; encourage a transition to multiple actuator RTHS scenarios; and make available a challenging problem for new researchers to investigate maRTHS approaches. We believe that this benchmark problem will encourage the advancing of the next-generation of controllers for more realistic RTHS methods.more » « less
An official website of the United States government

