skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 29, 2026

Title: Analysis of oil-based ignitable liquid residues by GC–MS and DART–MS
Fatty acid-based ignitable liquids (ILs), such as biodiesels and bio-based lighter fluids, represent a growing class of accelerants with limited forensic characterization. In this study, we applied gas chromatography–mass spectrometry (GC–MS) and direct analysis in real time mass spectrometry (DART–MS) to analyze plant oil-derived IL residues on wood and fabric substrates. ILs were prepared from ten different plant oils, subjected to burning, and extracted from fire debris using the ASTM E1412 activated charcoal method. GC–MS analysis resolved characteristic fatty acid methyl esters (FAMEs) and identified diagnostic fragment ions (m/z 55, 67, 74, 79). The fragmentation patterns of unsaturated and saturated FAMEs were systematically examined and compared against experimental data and reference spectra from online databases, demonstrating strong agreement and validating the reliability of these ion ratios as qualitative indicators of FAME saturation. DART–MS enabled rapid confirmation of major unsaturated FAMEs through the detection of protonated molecular ions, offering complementary identification without chromatographic separation. Chemometric analysis using principal component analysis (PCA) and analysis of variance-PCA revealed that FAME profiles were strongly dependent on the IL sources and remained reliable across replicate preparations and synthesis conditions, while substrate and combustion effects were mitigated using targeted ion extraction. These findings demonstrate the practical casework relevance of combining GC–MS and DART–MS for the detection and classification of fatty acid–based ILs in fire debris, providing robust chemical evidence to support arson investigations and to guide the inclusion of these emerging accelerants in forensic ignitable-liquid classification schemes.  more » « less
Award ID(s):
2216092
PAR ID:
10650055
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Forensic Chemistry
Volume:
46
Issue:
C
ISSN:
2468-1709
Page Range / eLocation ID:
100701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, direct analysis in real time mass spectrometry (DART-MS) was coupled to the solid phase microextraction (SPME) to extract and analyze the ignitable liquid residues (ILR) present in the sample matrices. The SPME extraction parameters, such as extraction temperature and extraction time, were optimized using a two factor central composite design. The SPME-DART-MS setup was utilized to analyze the substrates and fire debris matrices spiked with gasoline. The results indicate that the less volatile marker compounds from gasoline were recovered from the substrates and fire debris, and their profiles matched well with the gasoline liquid samples analyzed directly by DART-MS. As expected, the effective extraction of marker compounds in gasoline required a relatively high temperature, i.e., 150 ℃. In the presence of a matrix, a higher extraction temperature and longer extraction time could benefit the extraction efficiency. The desorption of ILR on SPME fiber was performed by inserting the fiber into the DART-MS helium gas stream at 300 ℃ for 1 min with no carry-over residues being observed between successive samples. The chemical information attained with this method is typically not observed in the current GC/MS-based practice. The SPME-DART-MS was also extended to reanalyze less volatile components of ILR on substrates after the ASTM E1412 activated charcoal method, which indicates its possible application subsequent to the traditional GC/MS ILR analysis. The SPME-DART-MS has shown promise in ILR detection as an important complementary tool. 
    more » « less
  2. Henry Charlier (Ed.)
    This paper reports an approach that developed instrumental parameters with two different GC-MS instruments. Data from the two devices were combined with principal component analysis (PCA) to analyze genuinely and ignited ignitable liquid residues (ILR). We simulate the field samples by burning seasoned pinewood soaked with each ignitable liquid (IL). Enough unburnt components from an IL remained on the burnt wood. These components were enough to reveal the chromatographic fingerprint of an IL. Most importantly, the chromatographic profile from a pure IL and IL poured onto a wooden substrate and ignited was identical. The chromatographic profiles reported from each instrument for each IL were reproducible to within 3% RSD. The MS data from both GC-MS instruments showed similar m/z peaks from all ILs, indicating similar hydrocarbon(s) and or fragmentation cluster patterns in the ILs studied ingredients. The PCA data showed characteristic differences giving rise to the separation between incendiaries, albeit some were overshadowed by clustering. In some cases, ILs that showed similar components in their mass spectra profile grouped as a class on the PCA display. We demonstrate an approach using direct headspace injection to individualize ILs recovered from crime scenes. Direct headspace injection and GC-MS combined with PCA are shown as promising facile methods for the qualitative determination of specific ILs in real-world arson samples. Initially, our project started as an undergraduate instrumental analysis guided-inquiry (GI) project. Such labs have been reported to enhance student learning and improve students' critical and problem-solving abilities. We plan to incorporate this approach in both an undergraduate instrumental analysis class and a graduate-level analytical chemistry class. 
    more » « less
  3. Accurate quantitation of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is essential for regulatory compliance, forensic investigations, and cannabis product development. Traditional methods, such as liquid chromatography (LC) and gas chromatography (GC) coupled with mass spectrometry, provide reliable results but are time-consuming and resource-intensive. This study introduces a rapid and high-throughput analytical method using zone heat-assisted direct analysis in real time mass spectrometry (DART-MS) combined with in-situ flash derivatization. The method employs trimethylphenylammonium hydroxide (TMPAH) for efficient derivatization, allowing for the differentiation of THC, CBD, and their acidic precursors, Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). A custom heated transfer zone was implemented to enhance derivatization efficiency and reduce carryover effects. The method was optimized for reagent concentration and gas stream temperature, achieving high specificity by minimizing interference from isomeric cannabinoids. Validation studies demonstrate good accuracy (relative error within ±15.9 %) and precision (relative standard deviation ≤15 %), with limits of quantitation of 7.5 µg/mL for THC/CBD and 0.5 µg/mL for THCA/CBDA. Comparative analysis of cannabis samples showed a strong correlation with reference LC/MS results, highlighting the reliability of the proposed method. DART-MS offers a significant time advantage, requiring only 10 s per analysis, making it a promising tool for high-throughput screening of cannabis samples in forensic laboratories. 
    more » « less
  4. A novel extraction device, capillary microextraction of volatiles (CMV) was coupled to a TRIDION-9 GC–MS with a needle trap (NTD) and evaluated for the analysis of ignitable liquids fire debris. The performance of the TRIDION-9 was compared to a benchtop GC–MS using CMV. A system detection limit of ~10 ng for each of 20 key ignitable liquid residue (ILR) compounds was determined for the T9 GC–MS. Dynamic headspace sampling of simulated ILRs was performed in closed and open-air systems. Closed system evaluations the CMV/NTD technique resulted in extraction performance similar to the CMV alone; however, ILR analysis on the T9 was impacted by limited chromatographic resolution. Compound identification was possible for 14 out of the 20 selected compounds on the T9 when 1 μL of a 1% standard accelerant mixture (SAM) was sampled, compared to 17 compounds on the benchtop GC–MS for the same mass loading. Open-air sampling with a modified vapor source resulted in the retention of most compounds with as low as 5 min. sampling, and equilibrium concentrations were reached after 10 min. No significant differences were observed between CMV and CMV/NTD sampling suggesting that the combined technique does not suffer from affinity bias. While the potential of the CMV/NTD extraction coupled to a T9 GC–MS for fire debris analysis was limited by the chromatographic resolution of the instrument, this study serves as proof of concept for the CMV’s potential for the extraction of ILRs in combination with portable GC–MS systems. 
    more » « less
  5. null (Ed.)
    Positional isomers of alkenes are frequently transparent to the mass spectrometer and it is difficult to provide convincing data to support their presence. This work focuses on the development of a new reactive nano-electrospray ionization (nESI) platform that utilizes non-inert metal electrodes ( e.g. , Ir and Ru) for rapid detection of fatty acids by mass spectrometry (MS), with concomitant localization of the CC bond to differentiate fatty acid isomers. During the electrospray process, the electrical energy (direct current voltage) is harnessed for in situ oxide formation on the electrode surface via electro-oxidation. The as-formed surface oxides are found to facilitate in situ epoxide formation at the CC bond position and the products are analyzed by MS in real-time. This phenomenon has been applied to analyze isomers of unsaturated fatty acids from complex serum samples, without pre-treatment. 
    more » « less