We use Bayesian statistics to infer the breakdown scale of pionless effective field theory in its standard power counting and with renormalization of observables carried out using the power-divergence subtraction scheme and cutoff regularization. We condition our inference on predictions of the total neutron-proton scattering cross section up next-to-next-to leading order. We quantify a median breakdown scale of approximately 1.4 mpi . The 68% degree of belief interval is [0.96, 1.69]mpi . This result confirms the canonical expectation that the pion mass is a relevant scale in low-energy nuclear physics.
more »
« less
This content will become publicly available on September 1, 2026
Breakdown scale of pionless effective field theory in the three-nucleon sector
We make order-by-order predictions of neutron–deuteron total cross sections up to next-to-next- to-leading order in pionless effective field theory. Using Bayesian methods, we infer a posterior distribution for the breakdown scale. The result shows a mode near 100 MeV, and a combined analysis with neutron–proton scattering further sharpens the inference, placing the mode close to the pion mass scale, consistent with the expected range of pionless effective field theory.vailable
more »
« less
- PAR ID:
- 10650057
- Publisher / Repository:
- Physical Review C
- Date Published:
- Journal Name:
- Physical Review C
- Volume:
- 112
- Issue:
- 3
- ISSN:
- 2469-9985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We combine equation of state of dense matter up to twice nuclear saturation density (nsat = 0.16 fm−3 ) obtained using chiral effective field theory (χEFT), and recent observations of neutron stars to gain insights about the high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of correlated EFT truncation errors based on order-byorder calculations up to next-to-next-to-next-to-leading order in the χEFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities, and provide stringent limits on the maximum and minimum radii of ∼ 1.4 M and ∼ 2.0 M stars. Including χEFT predictions from nsat to 2 nsat reduces the permitted ranges of the radius of a 1.4 M star, R1.4, by ∼ 3.5 km. If observations indicate R1.4 < 11.2 km, our study implies that either the squared speed of sound c 2 s > 1/2 for densities above 2 nsat, or that χEFT breaks down below 2 nsat. We also comment on the nature of the secondary compact object in GW190814 with mass ' 2.6 M , and discuss the implications of massive neutron stars > 2.1 M (2.6 M ) in future radio and gravitational-wave searches. Some form of strongly interacting matter with c 2 s > 0.35 (0.55) must be realized in the cores of such massive neutron stars. In the absence of phase transitions below 2 nsat, the small tidal deformability inferred from GW170817 lends support for the relatively small pressure predicted by χEFT for the baryon density nB in the range 1−2 nsat. Together they imply that the rapid stiffening required to support a high maximum mass should occur only when nB & 1.5 − 1.8 nsat.more » « less
-
It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with m=2 sets the limit of stable rotation for cold neutron stars (T≲1010 K) with masses between 1M⊙ and 2M⊙. This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between 1.96M⊙ and 2.10M⊙, the m=2 instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period).more » « less
-
Abstract We propose a multi-mode bar consisting of mass elements of decreasing size for the implementation of a gravitational version of the photo-electric effect through the stimulated absorption of up to kHz gravitons from a binary neutron star merger and post-merger. We find that the multi-mode detector has normal modes that retain the coupling strength to the gravitational wave of the largest mass-element, while only having an effective mass comparable to the mass of the smallest element. This allows the normal modes to have graviton absorption rates due to the tonne-scale largest mass, while the single graviton absorption process in the normal mode could be resolved through energy measurements of a mass-element in-principle smaller than pico-gram scale. We argue the feasibility of directly counting gravito-phonons in the bar through energy measurements of the end mass. This improves the transduction of the single-graviton signal, enhancing the feasibility of detecting single gravitons.more » « less
-
Abstract We write down the force-free electrodynamics equations in dipole coordinates and solve for axisymmetric normal modes corresponding to Alfvénic perturbations in the magnetosphere of a neutron star. We show that a single Alfvén wave propagating on dipole field lines spontaneously sources a fast magnetosonic (fms) wave at the next order in the perturbation expansion, without needing three-wave interaction. The frequency of the sourced fms wave is twice the original Alfvén wave frequency, and the wave propagates spherically outward. The properties of the outgoing fms wave can be computed exactly using the usual devices of classical electrodynamics. We extend the calculation to the closed zone of a rotating neutron star magnetosphere, and show that the Alfvén wave also sources a spherical fms wave but at the same frequency as the primary Alfvén wave.more » « less
An official website of the United States government
