skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Upcycled Composite Derived from Polyacrylonitrile and Elemental Sulfur: Thermomechanical Properties and Microstructural Insight
Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and tensile strengths comparable to or exceeding some common construction materials, including C62 brick. Comparison to other plastic-derived HSMs indicates that PANS90 exhibits mechanical properties including compressional strength (11.4 MPa), flexural strength (3.6 MPa) and tensile strength (2.5 MPa) within a similar or slightly improved range. Mechanistic investigations using small-molecule analogs (e.g., adiponitrile) suggest that thiophene ring formation and radical-driven sulfur–carbon bond formation are key reaction pathways, contributing to the composite’s crosslinked microstructure. Preliminary life cycle assessments estimate a global warming potential for PANS90 (0.33 kg CO2e/kg) that is about three times lower than that of Ordinary Portland Cement, underscoring its reduced environmental footprint. Overall, this sulfur-based upcycling strategy addresses two pressing waste-management concerns—surplus sulfur from petroleum refining and unrecycled PAN—while furnishing robust composites suitable for applications ranging from lightweight construction materials to specialty polymer systems.  more » « less
Award ID(s):
2203669
PAR ID:
10650097
Author(s) / Creator(s):
;
Publisher / Repository:
mdpi
Date Published:
Journal Name:
Sustainability
Volume:
17
Issue:
8
ISSN:
2071-1050
Page Range / eLocation ID:
3702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rancid animal fats unsuitable for human or animal food production represent low‐value and abundant, yet underexploited organic chemical precursors. The current work describes a strategy to synthesize high sulfur‐content materials (HSMs) that directly utilizes a blend of partially hydrolyzed chicken fat and plant oils as the organic comonomers, following up on analogous reactions using brown grease in place of chicken fat. The reaction of sulfur and chicken fat with either canola or sunflower oil yielded crosslinked polymer composites CFSxor GFSx, respectively (x = wt% sulfur, varied from 85%–90%). The composites exhibited compressive strengths of 24.7–31.7 MPa, and flexural strengths of 4.1–5.7 MPa, exceeding the value of established construction materials like ordinary Portland cement (compressive strength ≥17 MPa required for residential building, flexural strength 2–5 MPa). The composites also exhibited thermal stability up to 215–224 °C. The simple single‐step protocol described herein represents a way to upcycle an affordable and previously unexploited animal fat resource to form structural composites via the atom economical inverse vulcanization mechanism. 
    more » « less
  2. Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint. A range of terpenoid–sulfur cements have shown compressional and flexural properties exceeding those of some commercial structural mineral cements. Pozzolans such as fly ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) and abundant clay resources such as metakaolin (MK) are attractive fines for addition to binders. Herein, we report 10 composites prepared by a combination of sulfur, terpenoids (geraniol or citronellol), and these pozzolans. This study reveals the extent to which the addition of the pozzolan fines to the sulfur–terpenoid cements influences their mechanical properties and chemical resistance. The sulfur–terpenoid composites CitS and GerS were prepared by the reaction of 90 wt% sulfur and 10 wt% citronellol or geraniol oil, respectively. The density of the composites fell within the range of 1800–1900 kg/m3 and after 24 h submersion in water at room temperature, none of the materials absorbed more than 0.7 wt% water. The compressional strength of the as-prepared materials ranged from 9.1–23.2 MPa, and the percentage of compressional strength retained after acid challenge (submersion in 0.1 M H2SO4 for 24 h) ranged from 80–100%. Incorporating pozzolan fines into the already strong CitS (18.8 MPa) had negligible effects on its compressional strength within the statistical error of the measurement. CitS-SF and CitS-MK had slightly higher compressive strengths of 20.4 MPa and 23.2 MPa, respectively. CitS-GGBFS and CitS-FA resulted in slightly lower compressive strengths of 17.0 MPa and 15.8 MPa, respectively. In contrast, the compressional strength of initially softer GerS (11.7 MPa) benefited greatly after incorporating hard mineral fines. All GerS derivatives had higher compressive strengths than GerS, with GerS-MK having the highest compressive strength of 19.8 MPa. The compressional strengths of several of the composites compare favorably to those required by traditional mineral cements for residential building foundations (17 MPa), whereas such mineral products disintegrate upon similar acid challenge. 
    more » « less
  3. Abstract Poly(methyl methacrylate) (PMMA) is an important commodity polymer having a wide range of applications. Currently, only about 10% of PMMA is recycled. Herein, a simple two‐stage process for the chemical upcycling of PMMA is discussed. In this method PMMA is modified by transesterification with a bio‐derived, olefin‐bearing terpenoid, geraniol. In the second stage, olefin‐derivatized PMMA is reacted with sulfur to form a network composite by an inverse vulcanization mechanism. Inverse vulcanization of PGMA with elemental sulfur (90 wt.%) yielded the durable compositePGMA‐S. This composite was characterized by NMR spectrometry, IR spectroscopy, elemental analysis, thermogravimetric analysis, and differential scanning calorimetry. Composite water uptake, compressional strength analysis, flexural strength analysis, tensile strength analysis, and thermal recyclability are presented with comparison to current commercial structural materials.PGMA‐Sexhibits a similar compressive strength (17.5 MPa) to that of Portland cement.PGMA‐Sdemonstrates an impressive flexural strength of 4.76 MPa which exceeds the flexural strength (>3 MPa) of many commercial ordinary Portland cements. This study provides a way to upcycle waste PMMA through combination with a naturally‐occurring olefin and industrial waste sulfur to yield composites having mechanical properties competitive with ecologically detrimental legacy building materials. 
    more » « less
  4. ABSTRACT Brown grease (BG) is a high‐free fatty acid (FFA) waste coproduct from the food industry that remains largely unexploited. Herein, we describe a design strategy to upcycle BG into high sulfur‐content materials (HSMs) via inverse vulcanization, circumventing the need for costly transition metals or food‐grade compatibilizers. First, BG was esterified with methyl or allyl groups, yielding MeBG and aBG, respectively. This modification masked the polar carboxylic acids and enhanced miscibility with molten sulfur. Subsequent inverse vulcanization produced remeltable HSMs at 80 or 90 wt% sulfur with uniform elemental distributions by SEM–EDX. FT‐IR spectroscopy revealed the consumption of C=C moieties and the formation of C–S bonds, signifying robust cross‐linking. Thermal analysis (TGA, DSC) indicated good thermal stability (Td,5%up to 223°C) and glass transitions characteristic of polysulfide networks. Mechanical evaluations demonstrated compressive strengths up to 19.2 MPa, exceeding the minimum requirement for residential foundation‐grade cement (17 MPa) and rivaling previously reported HSMs containing similarly high sulfur content. Notably, MeBG and aBG incorporate organics comprising up to 97 wt% BG, significantly improving the upcycled mass efficiency relative to earlier BG‐based composites. This esterification‐driven approach thus offers a practical, scalable pathway to convert low‐value BG into advanced materials with tunable thermomechanical properties. 
    more » « less
  5. Herein we report a method for the chemical recycling of poly(ethylene terephthalate) (PET) by a three-stage process employing sustainably-sourced organic materials and industrial byproduct sulfur. In this protocol, PET was subject to glycolysis with diethylene glycol to yield low molecular weight oligomers with hydroxyl end groups. The glycolyzed PET (GPET) was then reacted with oleoyl chloride to yield esterified PET (EPET) containing vulcanizable olefin units. The oligomers constituting GPET and EPET were elucidated by MALDI-TOF spectrometry. EPET underwent inverse vulcanization with elemental sulfur (90 wt%) for 35 min or 24 h to yield xPES or mPES, respectively. The composition, thermal, morphological, thermal and mechanical properties were characterized. The composites exhibited good to excellent mechanical properties that were improved significantly by extending the reaction time from 35 min used to prepare xPES (compressive strength = 10.5 MPa, flexural strength = 2.7 MPa) to 24 h used to prepare mPES (compressive strength = 26.9 MPa, flexural strength = 7.7 MPa). Notably, the compressive and flexural strengths of mPES represent 158% and 208% of the values required for residential building foundations made from traditional materials such as ordinary Portland cement. The three-stage approach delineated herein thus represents a way to mediate chemical recycling of waste plastic with green coreagents to yield composites having mechanical properties competitive with existing commercial structural materials. 
    more » « less