skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 15, 2026

Title: Brown Grease Esterification: A Design Strategy to Modulate Homogeneity, Cross‐Linking, and Upcycled Mass Economy in High Sulfur‐Content Materials
ABSTRACT Brown grease (BG) is a high‐free fatty acid (FFA) waste coproduct from the food industry that remains largely unexploited. Herein, we describe a design strategy to upcycle BG into high sulfur‐content materials (HSMs) via inverse vulcanization, circumventing the need for costly transition metals or food‐grade compatibilizers. First, BG was esterified with methyl or allyl groups, yielding MeBG and aBG, respectively. This modification masked the polar carboxylic acids and enhanced miscibility with molten sulfur. Subsequent inverse vulcanization produced remeltable HSMs at 80 or 90 wt% sulfur with uniform elemental distributions by SEM–EDX. FT‐IR spectroscopy revealed the consumption of C=C moieties and the formation of C–S bonds, signifying robust cross‐linking. Thermal analysis (TGA, DSC) indicated good thermal stability (Td,5%up to 223°C) and glass transitions characteristic of polysulfide networks. Mechanical evaluations demonstrated compressive strengths up to 19.2 MPa, exceeding the minimum requirement for residential foundation‐grade cement (17 MPa) and rivaling previously reported HSMs containing similarly high sulfur content. Notably, MeBG and aBG incorporate organics comprising up to 97 wt% BG, significantly improving the upcycled mass efficiency relative to earlier BG‐based composites. This esterification‐driven approach thus offers a practical, scalable pathway to convert low‐value BG into advanced materials with tunable thermomechanical properties.  more » « less
Award ID(s):
2203669
PAR ID:
10650096
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
wiley
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
63
Issue:
12
ISSN:
2642-4150
Page Range / eLocation ID:
2651 to 2661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rancid animal fats unsuitable for human or animal food production represent low‐value and abundant, yet underexploited organic chemical precursors. The current work describes a strategy to synthesize high sulfur‐content materials (HSMs) that directly utilizes a blend of partially hydrolyzed chicken fat and plant oils as the organic comonomers, following up on analogous reactions using brown grease in place of chicken fat. The reaction of sulfur and chicken fat with either canola or sunflower oil yielded crosslinked polymer composites CFSxor GFSx, respectively (x = wt% sulfur, varied from 85%–90%). The composites exhibited compressive strengths of 24.7–31.7 MPa, and flexural strengths of 4.1–5.7 MPa, exceeding the value of established construction materials like ordinary Portland cement (compressive strength ≥17 MPa required for residential building, flexural strength 2–5 MPa). The composites also exhibited thermal stability up to 215–224 °C. The simple single‐step protocol described herein represents a way to upcycle an affordable and previously unexploited animal fat resource to form structural composites via the atom economical inverse vulcanization mechanism. 
    more » « less
  2. ABSTRACT High sulfur‐content materials (HSMs) prepared via inverse vulcanization are attractive for a range of sustainable material applications, particularly when synthesized from waste‐derived feedstocks such as brown grease (BG). Two BG‐based composites,SunBG90andaBG90, were prepared using elemental sulfur and either native or allylated brown grease, respectively. This study explores the effect of reinforcing these sulfur‐rich networks with low loadings (0.5–2 wt. %) of highcis‐1,4‐content liquid polybutadiene (PBD). Incorporation of PBD resulted in significant increases in storage modulus, with a near‐linear relationship between PBD content and stiffness enhancement for both material types. At −60°C, storage modulus increased more than fivefold foraBG90and more than tripled forSunBG90. In contrast, flexural strength and flexural modulus exhibited non‐linear responses, with diminishing or reversed gains at higher PBD loadings, suggesting limits to rubber domain compatibility and dispersion. Thermal analysis confirmed high decomposition temperatures (212°C–226°C) and stable glass transitions, indicating thermal robustness of the reinforced networks. Compared with previous studies requiring higher PBD loadings, these results demonstrate that BG‐based HSMs can be effectively reinforced at low additive levels, offering mechanically robust, low‐cost, and renewable alternatives for structural applications. 
    more » « less
  3. null (Ed.)
    High sulfur-content materials (HSMs) have been investigated for a plethora of applications owing to a combination of desirable properties and the low cost of waste sulfur as a starting monomer. Whereas extended sulfur catenates are unstable with respect to orthorhombic sulfur (S 8 rings) at STP, oligomeric/polymeric sulfur chains can be stabilized when they are confined in a supporting matrix. The vast majority of reported HSMs have been made by inverse vulcanization of sulfur and olefins. In the current case, a radical aryl halide–sulfur polymerization (RASP) route was employed to form an HSM ( XS81 ) by copolymerizing elemental sulfur with the xylenol derivative 2,4-dimethyl-3,5-dichlorophenol (DDP). XS81 is a composite of which 81 wt% is sulfur, wherein the sulfur is distributed between cross-linking chains averaging four sulfur atoms in length and trapped sulfur that is not covalently attached to the network. XS81 (flexural strength = 2.0 MPa) exhibits mechanical properties on par with other HSMs prepared by inverse vulcanization. Notably, XS81 retains mechanical integrity over many heat-recast cycles, making it a candidate for facile recyclability. This is the first report of an HSM comprising stabilized polymeric sulfur that has been successfully prepared from a small molecular comonomer by RASP. Preparation of XS81 thus demonstrates a new route to access HSMs using small molecular aryl halides, a notable expansion beyond the olefins required for the well-studied inverse vulcanization route to HSMs from small molecular comonomers. 
    more » « less
  4. Abstract Low cost and high durability have made Portland cement the most widely‐used building material, but benefits are offset by environmental harm of cement production contributing 8–10% of total anthropogenic CO2gas emissions. High sulfur‐content materials (HSMs) are an alternative that can perform the binding roles as cements with a smaller carbon footprint, and possibly superior chemical, physical, and mechanical properties. Inverse vulcanization of 90 wt% sulfur with 10 wt% canola oil or sunflower oil to yield CanS or SunS, respectively. Notably, these HSMs prepared at temperatures ≤180 °C compared to >1200 °C hours for Portland cement CanS was combined with 5 wt% fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK) to give composites CanS‐FA, CanS‐SF, CanS‐GGBFS, and CanS‐MK, respectively. The analogous protocol with SunS likewise yielded SunS‐FA, SunS‐SF, SunS‐GGBFS, and SunS‐MK. Each of these HSMs exhibit high compressive mechanical strength, low water uptake values, and exceptional resistance to acid‐induced corrosion. All of the composites also exhibit superior compressive strength retention after exposure to acidic solutions, conditions under which Portland cement undergoes dissolution. The polymer cement‐pozzolan composites reported herein may thus serve as greener alternatives to traditional Portland cement in some applications. 
    more » « less
  5. Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and tensile strengths comparable to or exceeding some common construction materials, including C62 brick. Comparison to other plastic-derived HSMs indicates that PANS90 exhibits mechanical properties including compressional strength (11.4 MPa), flexural strength (3.6 MPa) and tensile strength (2.5 MPa) within a similar or slightly improved range. Mechanistic investigations using small-molecule analogs (e.g., adiponitrile) suggest that thiophene ring formation and radical-driven sulfur–carbon bond formation are key reaction pathways, contributing to the composite’s crosslinked microstructure. Preliminary life cycle assessments estimate a global warming potential for PANS90 (0.33 kg CO2e/kg) that is about three times lower than that of Ordinary Portland Cement, underscoring its reduced environmental footprint. Overall, this sulfur-based upcycling strategy addresses two pressing waste-management concerns—surplus sulfur from petroleum refining and unrecycled PAN—while furnishing robust composites suitable for applications ranging from lightweight construction materials to specialty polymer systems. 
    more » « less