skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 25, 2026

Title: Drive-throughs to driveways: high-strength composites from multi-material post-consumer waste collected from fast food restaurants
This study evaluates the use of post-consumer fast-food restaurant waste and elemental sulfur to create high-strength composite materials. Compressive strengths exceed those of C62 building brick and flexural strengths are competitive with OPC.  more » « less
Award ID(s):
2203669
PAR ID:
10650098
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
RSC
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
13
Issue:
25
ISSN:
2050-7488
Page Range / eLocation ID:
19933 to 19943
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint. A range of terpenoid–sulfur cements have shown compressional and flexural properties exceeding those of some commercial structural mineral cements. Pozzolans such as fly ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) and abundant clay resources such as metakaolin (MK) are attractive fines for addition to binders. Herein, we report 10 composites prepared by a combination of sulfur, terpenoids (geraniol or citronellol), and these pozzolans. This study reveals the extent to which the addition of the pozzolan fines to the sulfur–terpenoid cements influences their mechanical properties and chemical resistance. The sulfur–terpenoid composites CitS and GerS were prepared by the reaction of 90 wt% sulfur and 10 wt% citronellol or geraniol oil, respectively. The density of the composites fell within the range of 1800–1900 kg/m3 and after 24 h submersion in water at room temperature, none of the materials absorbed more than 0.7 wt% water. The compressional strength of the as-prepared materials ranged from 9.1–23.2 MPa, and the percentage of compressional strength retained after acid challenge (submersion in 0.1 M H2SO4 for 24 h) ranged from 80–100%. Incorporating pozzolan fines into the already strong CitS (18.8 MPa) had negligible effects on its compressional strength within the statistical error of the measurement. CitS-SF and CitS-MK had slightly higher compressive strengths of 20.4 MPa and 23.2 MPa, respectively. CitS-GGBFS and CitS-FA resulted in slightly lower compressive strengths of 17.0 MPa and 15.8 MPa, respectively. In contrast, the compressional strength of initially softer GerS (11.7 MPa) benefited greatly after incorporating hard mineral fines. All GerS derivatives had higher compressive strengths than GerS, with GerS-MK having the highest compressive strength of 19.8 MPa. The compressional strengths of several of the composites compare favorably to those required by traditional mineral cements for residential building foundations (17 MPa), whereas such mineral products disintegrate upon similar acid challenge. 
    more » « less
  2. Abstract BackgroundIn recent years public health research has shifted to more strengths or asset-based approaches to health research but there is little understanding of what this concept means to Indigenous researchers. Therefore our purpose was to define an Indigenous strengths-based approach to health and well-being research. MethodsUsing Group Concept Mapping, Indigenous health researchers (N = 27) participated in three-phases. Phase 1: Participants provided 218 unique responses to the focus prompt “Indigenous Strengths-Based Health and Wellness Research…” Redundancies and irrelevant statements were removed using content analysis, resulting in a final set of 94 statements. Phase 2: Participants sorted statements into groupings and named these groupings. Participants rated each statement based on importance using a 4-point scale. Hierarchical cluster analysis was used to create clusters based on how statements were grouped by participants. Phase 3: Two virtual meetings were held to share and invite researchers to collaboratively interpret results. ResultsA six-cluster map representing the meaning of Indigenous strengths-based health and wellness research was created. Results of mean rating analysis showed all six clusters were rated on average as moderately important. ConclusionsThe definition of Indigenous strengths-based health research, created through collaboration with leading AI/AN health researchers, centers Indigenous knowledges and cultures while shifting the research narrative from one of illness to one of flourishing and relationality. This framework offers actionable steps to researchers, public health practitioners, funders, and institutions to promote relational, strengths-based research that has the potential to promote Indigenous health and wellness at individual, family, community, and population levels. 
    more » « less
  3. A bstract Muon colliders are an exciting possibility for reaching the highest energies possible on the shortest timescale. They potentially combine the greatest strengths of e + e − and pp colliders by bridging the energy versus precision dichotomy. In this paper we study the sensitivity of Higgs properties that can be achieved with a future 3 or 10 TeV muon collider from single Higgs production. The results presented here represent the first comprehensive picture for the precision achievable including backgrounds and using fast detector simulation with Delphes. Additionally, we compare the results of fast detector simulation with available full simulation studies that include the muon collider specific Beam Induced Background, and show the results are largely unchanged. We comment on some of the strengths and weaknesses of a high energy muon collider for Higgs physics alone, and demonstrate the complementarity of such a collider with the LHC and e + e − Higgs factories. Furthermore, we discuss some of the exciting avenues for improving future results from both theoretical and detector R&D that could be undertaken. 
    more » « less
  4. Abstract Magnetic fields play a crucial role in various astrophysical processes within the intracluster medium, including heat conduction, cosmic-ray acceleration, and the generation of synchrotron radiation. However, measuring magnetic field strength is typically challenging due to the limited availability of Faraday rotation measure sources. To address the challenge, we propose a novel method that employs Convolutional Neural Networks (CNNs) alongside synchrotron emission observations to estimate magnetic field strengths in galaxy clusters. Our CNN model is trained on either magnetohydrodynamic (MHD) turbulence simulations or MHD galaxy cluster simulations, which incorporate complex dynamics such as cluster mergers and sloshing motions. The results demonstrate that CNNs can effectively estimate magnetic field strengths with mean-squared error of approximately 0.135µG2, 0.044µG2, and 0.02µG2forβ = 100, 200, and 500 conditions, respectively. Additionally, we have confirmed that our CNN model remains robust against noise and variations in viewing angles with sufficient training, ensuring reliable performance under a wide range of observational conditions. We compare the CNN approach with the traditional magnetic field strength estimate method that assumes equipartition between cosmic-ray electron energy and magnetic field energy. In contrast to the equipartition method, this CNN approach relies on the morphological feature of synchrotron images, offering a new perspective for complementing traditional estimates and enhancing our understanding of cosmic-ray acceleration mechanisms. 
    more » « less
  5. Abstract We present average magnetic field measurements derived from high-resolution near-infrared IGRINS spectra of a carefully selected sample of 28 M dwarfs. All 28 have reported magnetic field strengths in the literature. The main goal of this work is to investigate the accuracy, precision, and limitations of magnetic field measurements from IGRINS spectra. This investigation is critical to validating the robustness of our methods before we apply them to over 500 IGRINS-observed M dwarfs in the next paper of the series. We used the Zeeman broadening and Zeeman intensification methods to measure average magnetic fields. Our measurements are all consistent with the previous measurements to within ±1 kG, with an average offset of −0.17 kG for the broadening method and +0.19 kG for the intensification method. We find that the detection limit of IGRINS is ∼0.9 kG with the Zeeman broadening method, in accordance with the instrumental broadening limit of the spectrograph. With the Zeeman intensification method, we are able to detect down to ∼0.7 kG with a signal-to-noise ratio of 150 or greater. We find an advantage of using the intensification method over the broadening method, which is the ability to reliably measure the magnetic field strengths of stars that are cooler than 3100 K where the spectrum becomes dominated by molecular lines. Therefore, the intensification method is crucial to study stellar magnetism of late-M and brown dwarfs. 
    more » « less