skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Base-Free Borylation of Aryl Halides Enabled by Zn-Promoted Halide Abstraction
Herein we report the palladium-catalyzed borylation of aryl halides (iodides or bromides) under base-free conditions utilizing a commercially available Lewis acidic mediator, Zn(OTf)2. Under these conditions, an array of electronically and functional group-diverse aryl iodides and bromides undergo borylation to afford the corresponding aryl boronic esters in up to 82% isolated yield. Mechanistic investigations are consistent with Zn(OTf)2 enabling transmetalation between a cationic Pd(II)-Ar intermediate and B2pin2 via halide abstraction. Furthermore, stabilization of the cationic [ArPdII]+ complex with added [BArF4]– significantly improves reaction efficiency with electron-poor arenes.  more » « less
Award ID(s):
2155133
PAR ID:
10650116
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Organic Letters
Volume:
26
Issue:
49
ISSN:
1523-7060
Page Range / eLocation ID:
10481 to 10486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the palladium-catalyzed gem-difluoroallylation of aryl halides and pseudo halides with 3,3-difluoroallyl boronates in high yield with high regioselectivity, and we report the preparation of the 3,3-difluoroallyl boronate reactants by a copper-catalyzed defluorinative borylation of inexpensive gaseous 3,3,3-trifluoropropene with bis(pinacola-to) diboron. The gem-difluoroallylation of aryl and heteroaryl bromides proceeds with low catalyst loading (0.1 mol% [Pd]) and tolerates a wide range of functional groups, including primary alcohols, secondary amines, ethers, ketones, esters, amides, aldehydes, nitriles, halides, and nitro groups. This protocol extends to aryl iodides, chlorides, and triflates, as well as substituted difluoroallyl boronates, providing a versatile synthesis of gem-difluoroallyl arenes that we show to be valuable intermediates to a series of fluorinated building blocks 
    more » « less
  2. null (Ed.)
    A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp 2 -hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp 2 -hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C–C bonds. 
    more » « less
  3. Abstract Simple access to aryl sulfinates from aryl iodides and bromides is reported using an inexpensive Ni‐electrocatalytic protocol. The reaction exhibits a broad scope, uses stock solution of simple SO2as sulfur source, and can be scaled up in batch and recycle flow settings. The limitations of this reaction are clearly shown and put into context by benchmarking with state‐of‐the‐art Pd‐based methods. 
    more » « less
  4. Herein we disclosed an unprecedented photochemically driven nickel‐catalyzed carboxylative Buchwald–Hartwig amination to access a wide range of aryl carbamate derivatives. This reaction is performed under mild condition of temperature and atmospheric pressure of CO2 starting from commercially available (hetero)aryl iodides/bromides derivatives and alkyl amines preventing the formation of hazardous and/or toxic waste. Moreover, preliminary mechanistic investigations including stochiometric experiments as well as DFT calculations allow us to shed light on the reaction mechanism. 
    more » « less
  5. Initial reports on the novel Cu-catalyzed direct arylation polymerization (Cu-DArP) stated that it required the use of aryl iodides. Herein, we report the first Cu-DArP methodology using more accessible and practical aryl-bromides with catalytic Cu, leading to a range of conjugated polymers with good molecular weights (up to 17.3 kDa) and an undetectable level of defects. 
    more » « less