Abstract:Achieving durable antibody-mediated protection remains critical in vaccine develop-ment, particularly for viral diseases like COVID-19 and HIV. We discuss factors influencing an-tibody durability, highlighting the role of long-lived plasma cells (LLPCs) in the bone marrow, which are essential for sustained antibody production over many years. The frequencies and prop-erties of bone marrow LLPC are critical determinants of the broad spectrum of antibody durability for different vaccines. Vaccines for diseases like measles and mumps elicit long-lasting antibod-ies; those for COVID-19 and HIV do not. High epitope densities in the vaccine are known to favor antibody durability, but we discuss three underappreciated variables that also play a role in long-lived antibody responses. First, in addition to high epitope densities, we discuss the im-portance of CD21 as a critical determinant of antibody durability. CD21 is a B cell antigen recep-tor (BCR) complex component. It significantly affects BCR signaling strength in a way essential for generating LLPC in the bone marrow. Second, all antibody-secreting cells (ASC) are not cre-ated equal. There is a four-log range of antibody secretion rates, and we propose epigenetic im-printing of different rates on ASC, including LLPC, as a factor in antibody durability. Third, antibody durability afforded by bone marrow LLPC is independent of continuous antigenic stim-ulation. By contrast, tissue-resident T-bet+CD21low ASC also persists in secondary lymphoid tissues and continuously produces antibodies depending on persisting antigen and the tissue mi-croenvironment. We discuss these variables in the context of making an HIV vaccine that elicits broadly neutralizing antibodies against HIV that persist at protective levels without continuous vaccination over many years.
more »
« less
Deficient Generation of Spike-Specific Long-Lived Plasma Cells in the Bone Marrow After Severe Acute Respiratory Syndrome Coronavirus 2 Infection
Abstract Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.
more »
« less
- Award ID(s):
- 2051820
- PAR ID:
- 10650348
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The Journal of Infectious Diseases
- Volume:
- 230
- Issue:
- 1
- ISSN:
- 0022-1899
- Page Range / eLocation ID:
- e30 to e33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundConfidence in natural immunity after infection with severe acute respiratory syndrome coronavirus 2 is one reason for vaccine hesitancy. MethodsWe measured antibody-mediated neutralization of spike protein-ACE2 receptor binding in a large community-based sample of seropositive individuals who differed in severity of infection (N = 790). ResultsA total of 39.8% of infections were asymptomatic, 46.5% were symptomatic with no clinical care, 13.8% were symptomatic with clinical care, and 3.7% required hospitalization. Moderate/high neutralizing activity was present after 41.3% of clinically managed infections, in comparison with 7.9% of symptomatic and 1.9% of asymptomatic infections. ConclusionsPrior coronavirus disease 2019 infection does not guarantee a high level of antibody-mediated protection against reinfection in the general population.more » « less
-
One of the most consequential unknowns of the COVID-19 pandemic is the frequency at which vaccine boosting provides sufficient protection from infection. We quantified the statistical likelihood of breakthrough infections over time following different boosting schedules with messenger RNA (mRNA)-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech). We integrated anti-Spike IgG antibody optical densities with profiles of the waning of antibodies and corresponding probabilities of infection associated with coronavirus endemic transmission. Projecting antibody levels over time given boosting every 6 months, 1, 1.5, 2, or 3 years yielded respective probabilities of fending off infection over a 6-year span of >93%, 75%, 55%, 40%, and 24% (mRNA-1273) and >89%, 69%, 49%, 36%, and 23% (BNT162b2). Delaying the administration of updated boosters has bleak repercussions. It increases the probability of individual infection by SARS-CoV-2, and correspondingly, ongoing disease spread, prevalence, morbidity, hospitalization, and mortality. Instituting regular, population-wide booster vaccination updated to predominant variants has the potential to substantially forestall-and with global, widespread uptake, eliminate-COVID-19.more » « less
-
null (Ed.)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au–S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen–antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form “hot spots” to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light–matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in “hot spot” positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus.more » « less
-
null (Ed.)Highly sensitive, specific, and point-of-care (POC) serological assays are an essential tool to manage coronavirus disease 2019 (COVID-19). Here, we report on a microfluidic POC test that can profile the antibody response against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens—spike S1 (S1), nucleocapsid (N), and the receptor binding domain (RBD)—simultaneously from 60 μl of blood, plasma, or serum. We assessed the levels of antibodies in plasma samples from 31 individuals (with longitudinal sampling) with severe COVID-19, 41 healthy individuals, and 18 individuals with seasonal coronavirus infections. This POC assay achieved high sensitivity and specificity, tracked seroconversion, and showed good concordance with a live virus microneutralization assay. We can also detect a prognostic biomarker of severity, IP-10 (interferon-γ–induced protein 10), on the same chip. Because our test requires minimal user intervention and is read by a handheld detector, it can be globally deployed to combat COVID-19.more » « less
An official website of the United States government

