skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low Levels of Neutralizing Antibodies After Natural Infection With Severe Acute Respiratory Syndrome Coronavirus 2 in a Community-Based Serological Study
Abstract BackgroundConfidence in natural immunity after infection with severe acute respiratory syndrome coronavirus 2 is one reason for vaccine hesitancy. MethodsWe measured antibody-mediated neutralization of spike protein-ACE2 receptor binding in a large community-based sample of seropositive individuals who differed in severity of infection (N = 790). ResultsA total of 39.8% of infections were asymptomatic, 46.5% were symptomatic with no clinical care, 13.8% were symptomatic with clinical care, and 3.7% required hospitalization. Moderate/high neutralizing activity was present after 41.3% of clinically managed infections, in comparison with 7.9% of symptomatic and 1.9% of asymptomatic infections. ConclusionsPrior coronavirus disease 2019 infection does not guarantee a high level of antibody-mediated protection against reinfection in the general population.  more » « less
Award ID(s):
2035114
PAR ID:
10363637
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Open Forum Infectious Diseases
Volume:
9
Issue:
3
ISSN:
2328-8957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective: Current guidance states that asymptomatic screening for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) prior to admission to an acute-care setting is at the facility’s discretion. This study’s objective was to estimate the number of undetected cases of SARS-CoV-2 admitted as inpatients under 4 testing approaches and varying assumptions. Design and setting: Individual-based microsimulation of 104 North Carolina acute-care hospitals Patients: All simulated inpatient admissions to acute-care hospitals from December 15, 2021, to January 13, 2022 [ie, during the SARS-COV-2 ο (omicron) variant surge]. Interventions: We simulated (1) only testing symptomatic patients, (2) 1-stage antigen testing with no confirmatory polymerase chain reaction (PCR) test, (3) 1-stage antigen testing with a confirmatory PCR for negative results, and (4) serial antigen screening (ie, repeat antigen test 2 days after a negative result). Results: Over 1 month, there were 77,980 admissions: 13.7% for COVID-19, 4.3% with but not for COVID-19, and 82.0% for non–COVID-19 indications without current infection. Without asymptomatic screening, 1,089 (credible interval [CI], 946–1,253) total SARS-CoV-2 infections (7.72%) went undetected. With 1-stage antigen screening, 734 (CI, 638–845) asymptomatic infections (67.4%) were detected, with 1,277 false positives. With combined antigen and PCR screening, 1,007 (CI, 875–1,159) asymptomatic infections (92.5%) were detected, with 5,578 false positives. A serial antigen testing policy detected 973 (CI, 845–1,120) asymptomatic infections (89.4%), with 2,529 false positives. Conclusions: Serial antigen testing identified >85% of asymptomatic infections and resulted in fewer false positives with less cost per identified infection compared to combined antigen plus PCR testing. 
    more » « less
  2. null (Ed.)
    The contributions of asymptomatic infections to herd immunity and community transmission are key to the resurgence and control of COVID-19, but are difficult to estimate using current models that ignore changes in testing capacity. Using a model that incorporates daily testing information fit to the case and serology data from New York City, we show that the proportion of symptomatic cases is low, ranging from 13 to 18%, and that the reproductive number may be larger than often assumed. Asymptomatic infections contribute substantially to herd immunity, and to community transmission together with presymptomatic ones. If asymptomatic infections transmit at similar rates as symptomatic ones, the overall reproductive number across all classes is larger than often assumed, with estimates ranging from 3.2 to 4.4. If they transmit poorly, then symptomatic cases have a larger reproductive number ranging from 3.9 to 8.1. Even in this regime, presymptomatic and asymptomatic cases together comprise at least 50% of the force of infection at the outbreak peak. We find no regimes in which all infection subpopulations have reproductive numbers lower than three. These findings elucidate the uncertainty that current case and serology data cannot resolve, despite consideration of different model structures. They also emphasize how temporal data on testing can reduce and better define this uncertainty, as we move forward through longer surveillance and second epidemic waves. Complementary information is required to determine the transmissibility of asymptomatic cases, which we discuss. Regardless, current assumptions about the basic reproductive number of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) should be reconsidered. 
    more » « less
  3. Abstract BackgroundFour severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants predominated in the United States since 2021. Understanding disease severity related to different SARS-CoV-2 variants remains limited. MethodViral genome analysis was performed on SARS-CoV-2 clinical isolates circulating March 2021 through March 2022 in Cleveland, Ohio. Major variants were correlated with disease severity and patient outcomes. ResultsIn total 2779 patients identified with either Alpha (n = 1153), Gamma (n = 122), Delta (n = 808), or Omicron variants (n = 696) were selected for analysis. No difference in frequency of hospitalization, intensive care unit (ICU) admission, and death were found among Alpha, Gamma, and Delta variants. However, patients with Omicron infection were significantly less likely to be admitted to the hospital, require oxygen, or admission to the ICU (χ2 = 12.8, P < .001; χ2 = 21.6, P < .002; χ2 = 9.6, P = .01, respectively). In patients whose vaccination status was known, a substantial number had breakthrough infections with Delta or Omicron variants (218/808 [26.9%] and 513/696 [73.7%], respectively). In breakthrough infections, hospitalization rate was similar regardless of variant by multivariate analysis. No difference in disease severity was identified between Omicron subvariants BA.1 and BA.2. ConclusionsDisease severity associated with Alpha, Gamma, and Delta variants is comparable while Omicron infections are significantly less severe. Breakthrough disease is significantly more common in patients with Omicron infection. 
    more » « less
  4. null (Ed.)
    Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributable to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence. 
    more » « less
  5. Abstract Infections produced by non-symptomatic (pre-symptomatic and asymptomatic) individuals have been identified as major drivers of COVID-19 transmission. Non-symptomatic individuals, unaware of the infection risk they pose to others, may perceive themselves—and be perceived by others—as not presenting a risk of infection. Yet, many epidemiological models currently in use do not include a behavioral component, and do not address the potential consequences of risk misperception. To study the impact of behavioral adaptations to the perceived infection risk, we use a mathematical model that incorporates the behavioral decisions of individuals, based on a projection of the system’s future state over a finite planning horizon. We found that individuals’ risk misperception in the presence of non-symptomatic individuals may increase or reduce the final epidemic size. Moreover, under behavioral response the impact of non-symptomatic infections is modulated by symptomatic individuals’ behavior. Finally, we found that there is an optimal planning horizon that minimizes the final epidemic size. 
    more » « less