skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Toehold-Mediated Strand Displacement as a Strategy to Program DNAzyme-catalyzed Peroxidation Localized to DNA Condensates
DNA nanotechnology can be leveraged to engineer nanoscale biochemical reactions, and thus, revolutionize biomanufacturing. The programmability is encoded in the interactions between base pairs of the nucleic acids. Functional nanostructures can be envisioned and formed, such as DNA nanostars, whose properties can be fine-tuned by engineering the number of arms or base pairs per arm and can yield synthetic condensate structures, and DNA-based enzymes that exhibit peroxidase-like activity. For example, certain guanine-rich sequences of DNA can fold into a quadruplex structure, bind a hemin co-factor, and catalyze a peroxidation reaction in which the substrate ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) gets oxidized by hydrogen peroxide and results in a colorimetric change. Because ABTS produces a blue-green color change upon oxidation, it can be used to visually observe the peroxidation reaction taking place within the DNA condensates. In this work, peroxidase-mimicking DNAzymes were used to catalyze colorimetric peroxidation within DNA condensate compartments; and toehold-mediated strand displacement (TMSD) was explored as a strategy to program the peroxidation reaction–specifically, by unwinding the G-quadruplex structure, which would effectively turn the reaction “off”. TMSD is a method of designing a single strand of DNA with an additional overhang region, called a toehold, to oust and replace a second strand attached to the toehold-possessing target strand. The presence of complementary toeholds on both the invading strand and the target strand increases the thermodynamic probability of displacing the single DNA strand originally bound to the target. Here, TMSD was adapted for use in ‘turning off’ the DNAzyme-catalyzed peroxidation reaction, either by preventing folding or disrupting the folded structure of the DNAzyme. A displacer strand complementary to the DNAzyme/toehold region was designed and added to the reaction mixture at different time points and concentrations for this purpose. Elucidating mechanisms to unwind the G-quadruplex structure of DNAzymes has promise in treating genetic disorders caused by unregulated G4 formation in the human genome. Furthermore, DNA nanotechnology can be used to compartmentalize, functionalize, and program the release of bioactive molecules in drug delivery strategies and other synthetic biology applications, highlighting the potential of TMSD to program DNA-based bioreactors. This high-impact study, carried out as part of the NSF Future Manufacturing program at Pasadena City College in collaboration with UCLA, UCSB, and Caltech, allowed undergraduate researchers to design and conduct their own experiments within a community college setting after undergoing scientific training by graduate students and postdocs from our collaborators’ institutions. \n\nIt also provided opportunities to communicate the scientific research through writing, poster presentations at national conferences, and teaching in courses and STEM outreach. The student researchers of the PCC nanostar program applied their knowledge in a classroom setting, where they taught other undergraduate students how to conduct aspects of this research in a General, Organic and Biochemistry laboratory course at PCC. This article underscores the importance of creating significant research and teaching opportunities for students as they begin their careers in STEM, impactful mentorship through undergraduate research, and the creativity involved in modern synthetic biology research and in the development of accessible and innovative science lessons.  more » « less
Award ID(s):
2134772
PAR ID:
10650359
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Zenodo, Journal of advanced technological education
Date Published:
Journal Name:
Journal of advanced technological education
ISSN:
2832-9627
Subject(s) / Keyword(s):
undergraduate research DNA nanotechnology Synthetic Biology General, Organic, and Biochemistry scientific method workforce development DNA nanostar equity in STEM STEM education STEM outreach women in science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Through the NSF Future Manufacturing research program at Pasadena City College (PCC), students engaged in authentic research to explore aspects of DNA nanotechnology and gain experience in the research process. Emphasizing the scientific method and workforce development, students collaborated with our scientific community at UCLA, UCSB and Caltech as they learned how to use the tools of synthetic biology to build nanoscale bioreactors. Toward this goal, students set out to investigate various parameters to couple a DNAzyme-catalyzed redox reaction to DNA condensates with the aim of localizing the reaction. DNAzymes, guanine-rich sequences of DNA that fold into a G4 quadruplex structure, bind hemin, and catalyze a peroxidation reaction, were formed in vitro and used to catalyze a colorimetric redox reaction. Substrates ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Amplifu Red were explored for their ability to ‘turn on’ or change color when oxidized by hydrogen peroxide in the presence of the peroxidase-like DNAzyme. In efforts to compartmentalize this reaction, the sequence for the G4 quadruplex was extended from one arm of a fluorescent 4-armed DNA nanostar, which contained either 15, 20, or 25 base pairs per arm and palindromic sticky ends. Upon annealing the DNA strands to form 4-armed DNA nanostars, with one of the strands containing the G4 sequence, the folded G4 quadruplex was tested for its ability to catalyze colorimetric peroxidation localized to DNA condensates. Students made important choices regarding the concentration of DNAzyme that would result in observable color change when localized to condensates; they carefully studied buffer compatibility between peroxidation and condensate formation; they tested two fluorogenic substrates in DNAzyme-catalyzed peroxidation, ABTS and Amplifu Red; and they meticulusly analyzed the results, using what they learned to inform future decisions. The results of these localization studies will be leveraged in the next steps of this research project aimed at building nanoscale bioreactors from DNA. This high-impact educational experience taught students about the iterative nature of science and the significance of exploring the literature. Through research, they learned the important higher-order skills of experimental design and effective scientific communication, facilitating their development as scientists. This synthetic biology research was translated into lessons and implemented in PCC courses and through outreach, which inspired the students taught in outreach and the PCC researchers who served as learning assistants in this equitable and accessible STEM education. 
    more » « less
  2. Through the NSF Future Manufacturing undergraduate research program at Pasadena City College (PCC), students utilize the tools of synthetic biology to build sustainable, DNA-based materials. The manipulation of DNA enables the construction of microscopic biochemical reactors through the formation of liquid-liquid phase-separated droplets, or DNA condensates. This research investigates the potential of DNA nanostars fused with G-tetraplexes, which can bind hemin, an iron-containing porphyrin co-factor, to form a DNAzyme capable of catalyzing peroxidation reactions within single condensate layers. The in vitro component of this research was enhanced by in silico coarse-grained molecular dynamics simulations, which generated 3D models of the DNA nanostars that allowed student researchers to visualize the behavior of the structures created in the laboratory. Leveraging this computational technique, student researchers developed educational resources and modular lessons to introduce these molecular simulations to a broad student audience at PCC. The simulation programs used, oxDNA and oxView, were instrumental in making this research accessible and engaging for diverse student groups. DNA nanostar simulations were integrated into the General, Organic, and Biochemistry curriculum at PCC, as well as during outreach events such as Girls Science Day, offering students insights into DNA nanostar dynamics and potential applications of DNA-based inventions. This paper details the use of simulation programs to recreate nucleic acid-based nanostructures, advancing the field of DNA nanotechnology. Molecular simulations helped the PCC research students develop experiments that demonstrate how enzymatic activity within DNA droplets can be achieved through G4 complexing. Simulating DNA nanostars with G4s was a profound educational exercise for students, as it taught them about the powerful synergy between in silico and in vitro experimentation. Students also learned about the limitations of modeling biomolecules using computational software, and our G4 simulation results may even inspire the integration of guanine-guanine interactions into the oxDNA program. These findings underscore the significant implications of in silico modeling and structural analysis in biochemical manufacturing and industrial applications, paving the way for further innovations in programmable biomolecular systems. By developing YouTube tutorials that teach students how to carry out nucleic acid simulations on any standard computer, the exploration of DNA dynamics and molecular programming is now widely accessible to both students and educators. 
    more » « less
  3. The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5′-truncated c-MYC promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca2+ ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs. 
    more » « less
  4. Abstract The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation. 
    more » « less
  5. null (Ed.)
    Abstract Nucleic acid interactions under crowded environments are of great importance for biological processes and nanotechnology. However, the kinetics and thermodynamics of nucleic acid interactions in a crowded environment remain poorly understood. We use a coarse-grained model of DNA to study the kinetics and thermodynamics of DNA duplex and hairpin formation in crowded environments. We find that crowders can increase the melting temperature of both an 8-mer DNA duplex and a hairpin with a stem of 6-nt depending on the excluded volume fraction of crowders in solution and the crowder size. The crowding induced stability originates from the entropic effect caused by the crowding particles in the system. Additionally, we study the hybridization kinetics of DNA duplex formation and the formation of hairpin stems, finding that the reaction rate kon is increased by the crowding effect, while koff is changed only moderately. The increase in kon mostly comes from increasing the probability of reaching a transition state with one base pair formed. A DNA strand displacement reaction in a crowded environment is also studied with the model and we find that rate of toehold association is increased, with possible applications to speeding up strand displacement cascades in nucleic acid nanotechnology. 
    more » « less