skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calcium-Dependent Chemiluminescence Catalyzed by a Truncated c-MYC Promoter G-Triplex DNA
The dynamic landscape of non-canonical DNA G-quadruplex (G4) folding into G-triplex intermediates has led to the study of G-triplex structures and their ability to serve as peroxidase-mimetic DNAzymes. Here we report the formation, stability, and catalytic activity of a 5′-truncated c-MYC promoter region G-triplex, c-MYC-G3. Through circular dichroism, we demonstrated that c-MYC-G3 adopts a stable, parallel-stranded G-triplex conformation. The chemiluminescent oxidation of luminol by the peroxidase mimicking DNAzyme activity of c-MYC-G3 was increased in the presence of Ca2+ ions. We utilized surface plasmon resonance to characterize both c-MYC-G3 G-triplex formation and its interaction with hemin. The detailed study of c-MYC-G3 and its ability to form a G-triplex structure and its DNAzyme activity identifies issues that can be addressed in future G-triplex DNAzyme designs.  more » « less
Award ID(s):
2122041
PAR ID:
10598290
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Molecules (MDPI)
Date Published:
Journal Name:
Molecules
Volume:
29
Issue:
18
ISSN:
1420-3049
Page Range / eLocation ID:
4457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The MYC oncogenic transcription factor is acetylated by the p300 and GCN5 histone acetyltransferases. The significance of MYC acetylation and the functions of specific acetylated lysine (AcK) residues have remained unclear. Here, we show that the major p300-acetylated K148(149) and K157(158) sites in human (or mouse) MYC and the main GCN5-acetylated K323 residue are reversibly acetylated in various malignant and nonmalignant cells. Oncogenic overexpression of MYC enhances its acetylation and alters the regulation of site-specific acetylation by proteasome and deacetylase inhibitors. Acetylation of MYC at different K residues differentially affects its stability in a cell type-dependent manner. Lysine-to-arginine substitutions indicate that although none of the AcK residues is required for MYC stimulation of adherent cell proliferation, individual AcK sites have gene-specific functions controlling select MYC-regulated processes in cell adhesion, contact inhibition, apoptosis, and/or metabolism and are required for the malignant cell transformation activity of MYC. Each AcK site is required for anchorage-independent growth of MYC-overexpressing cells in vitro, and both the AcK148(149) and AcK157(158) residues are also important for the tumorigenic activity of MYC transformed cells in vivo. The MYC AcK site-specific signaling pathways identified may offer new avenues for selective therapeutic targeting of MYC oncogenic activities. 
    more » « less
  2. Vibrio parahaemolyticus is a prominent infectious bacterium responsible for causing widespread cases of acute gastroenteritis in humans globally. In this regard, Colorimetric detection can be essentially used as a sensitive, rapid, and cost-effective detection method. In our research, we have developed a PCR-based detection platform integrated with HRPzyme and utilizing DNAzyme as a signaling probe which mimics peroxidase activity. The colorimetric signal is detectable at concentrations as low as 101 cfu mL−1 when measured with a spectrophotometer and at 103 cfu mL−1 through visual inspection. Additionally, extending the polyadenine length to 10 nucleotides resulted in a significant reduction in the background signaling of HRPzyme activity, yielding a relative intensity of 3.07 ± 0.23 arbitrary units (a.u.). Notably, even after a 120-min incubation period, there were no further changes observed in the colorimetric signal in positive samples, maintaining a consistent relative intensity of OD 410 = 0.55 ± 0.08. 
    more » « less
  3. Abstract While MYC is a significant oncogenic transcription factor driver of cancer, directly targeting MYC has remained challenging due to its intrinsic disorder and poorly defined structure, deeming it “undruggable.” Whether transient pockets formed within intrinsically disordered and unstructured regions of proteins can be selectively targeted with small molecules remains an outstanding challenge. Here, we developed a bespoke stereochemically-paired spirocyclic oxindole aziridine covalent library and screened this library for degradation of MYC. Through this screen, we identified a hit covalent ligand KL2-236, bearing a unique sulfinyl aziridine warhead, that engaged MYCin vitroas pure MYC/MAX protein complex andin situin cancer cells to destabilize MYC, inhibit MYC transcriptional activity and degrade MYC in a proteasome-dependent manner through targeting intrinsically disordered C203 and D205 residues. Notably, this reactivity was most pronounced for specific stereoisomers of KL2-236 with a diastereomer KL4-019 that was largely inactive. Mutagenesis of both C203 and D205 completely attenuated KL2-236-mediated MYC degradation. We have also optimized our initial KL2-236 hit compound to generate a more durable MYC degrader KL4-219A in cancer cells. Our results reveal a novel ligandable site within MYC and indicate that certain intrinsically disordered regions within high-value protein targets, such as MYC, can be interrogated by isomerically unique chiral small molecules, leading to destabilization and degradation. 
    more » « less
  4. null (Ed.)
    D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive. The structure of Pu27 is not available due to its polymorphism, but the G-quadruplex structures of its two shorter derivatives in complex with a ligand (Pu24/Phen-DC3 and Pu22/DC-34) are available and show significant structural variance as well as different ligand binding patterns in the 3′ region. Because D089-0563 shares the same scaffold as DC34 while having a significantly different scaffold from Phen-DC3, we picked Pu24 instead of Pu22 for this study in order to gain additional ligand binding insight. Using free ligand molecular dynamics binding simulations (33 μs), we probed the binding of D089-0563 to Pu24. Our clustering analysis identified three binding modes (top, side, and bottom) and subsequent MMPBSA binding energy analysis identified the top mode as the most thermodynamically stable. Our Markov State Model (MSM) analysis revealed that there are three parallel pathways for D089-0563 to the top mode from unbound state and that the ligand binding follows the conformational selection mechanism. Combining our predicted complex structures with the two experimental structures, it is evident that structural differences in the 3′ region between Pu24 and Pu22 lead to different binding behaviors despite having similar ligands; this also explains the different promoter activity caused by the two G-quadruplex sequences observed in a recent synthetic biology study. Based on interaction insights, 625 D089-0563 derivatives were designed and docked; 59 of these showed slightly improved docking scores. 
    more » « less
  5. Cox, Michael M (Ed.)
    Mycobacterium tuberculosis (Mtb) depends on the bifunctional enzyme catalase-peroxidase (KatG) for survival within the host. KatG exhibits both catalase and peroxidase activities, serving distinct yet critical roles. While its peroxidase activity is essential for activating the frontline tuberculosis drug isoniazid, its catalase activity protects Mtb from oxidative stress. This bifunctional enzyme is equipped with a unique, protein-derived cofactor, methionine-tyrosine-tryptophan (MYW), which enables catalase activity to efficiently disproportionate hydrogen peroxide in phagocytes. Recent studies reveal that the MYW cofactor naturally exists in a hydroperoxylated form (MYW-OOH) when cell cultures are grown under ambient conditions. New findings highlight a dynamic regulation of KatG activity, wherein the modification of the protein cofactor is removable-from MYW-OOH to MYW-at body temperature or in the presence of micromolar concentrations of hydrogen peroxide. This reversible modification modulates KatG's dual activities: MYW-OOH inhibits catalase activity while enhancing peroxidase activity, demonstrating the chemical accessibility of the cofactor. Such duality positions KatG as a unique target for tuberculosis drug development. Therapeutic strategies that exploit cofactor modification could hold promise, particularly against drug-resistant strains with impaired peroxidase activity. By selectively inhibiting catalase activity, these approaches would render Mtb more vulnerable to oxidative stress while enhancing isoniazid activation-a double-edged strategy for combating tuberculosis. 
    more » « less