skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Catalytic and modulation excitation visible-NIR spectroscopic insights into the consequences of K promotion and pretreatment on Cu/SiO2 for direct propylene epoxidation
Systematic fixed-bed reactor studies were performed under propylene epoxidation conditions with O2 (1 atm, 250 °C) to examine the impact of potassium and oxidative/reductive pretreatments on Cu/SiO2 catalysts. At similar propylene conversion and copper particle sizes (2–3 nm), hydrogen pretreatment of K-promoted Cu/SiO2 significantly increased propylene oxide (PO) selectivity, making it the primary product (∼40 %). Characterization of the spent catalysts using XPS and H2-TPR revealed a unique Cu-K interaction following H2 pretreatment and suggested a potential role for subsurface oxygen in the reaction. Activity tests with CuO and Cu2O, both with and without K, showed that K deactivates CuO while enhancing PO/acrolein ratio for Cu2O. Operando Modulation Excitation-Phase Sensitive Detection- Diffuse Reflectance Visible-Near Infrared Spectroscopy (ME-PSD-DRVis-NIR) revealed charge transfer correlations. These correlations suggested that the combined K and H2 increases the population of mixed-valent Cum+ (1 < m < 2) (Cu1+ and Cu2+ ensemble) sites and modulates the strength of oxygen adsorption and activation at these sites, thereby improving PO selectivity and formation rate. These results demonstrate that controlling the copper oxidation state through promoters and pretreatments enhances PO selectivity in direct propylene epoxidation with O2, providing valuable insights for improving catalytic activity and identifying crucial oxygen species.  more » « less
Award ID(s):
1847655
PAR ID:
10650417
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Catalysis
ISSN:
0021-9517
Page Range / eLocation ID:
116242
Subject(s) / Keyword(s):
Copper Potassium Oxidation State Pretreatment Propylene Epoxidation Charge Transfer Modulation Excitation Spectroscopy.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Direct propylene epoxidation using Au-based catalysts is an important gas-phase reaction and is clearly a promising route for the future industrial production of propylene oxide (PO). For instance, gold nanoparticles or clusters that consist of a small number of atoms demonstrate unique and even unexpected properties, since the high ratio of surface to bulk atoms can provide new reaction pathways with lower activation barriers. Support materials can have a remarkable effect on Au nanoparticles or clusters due to charge transfer. Moreover, Au (or Au-based alloy, such as Au–Pd) can be loaded on supports to form active interfacial sites (or multiple interfaces). Model studies are needed to help probe the underlying mechanistic aspects and identify key factors controlling the activity and selectivity. The current theoretical/computational progress on this system is reviewed with respect to the molecular- and catalyst-level aspects (e.g., first-principles calculations and kinetic modeling) of propylene epoxidation over Au-based catalysts. This includes an analysis of H2 and O2 adsorption, H2O2 (OOH) species formation, epoxidation of propylene into PO, as well as possible byproduct formation. These studies have provided a better understanding of the nature of the active centers and the dominant reaction mechanisms, and thus, could potentially be used to design novel catalysts with improved efficiency. 
    more » « less
  2. The activation of reactants by catalytically active metal sites at metal-oxide interfaces is important for understanding the effect of metal-support interactions on nanoparticle catalysts and for tuning activity and selectivity. Using a combined experimental and theoretical approach, we studied the activation of H2 and the effect of CO poisoning on isolated Rh atoms completely or partially covered by a copper oxide (Cu2O) thin film. Temperature programmed desorption (TPD) experiments conducted in ultra-high vacuum (UHV) show that neither a partially nor a fully oxidized Cu2O layer grown on a Rh/Cu(111) single-atom alloy can activate hydrogen in UHV. However, in situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) experiments performed at elevated H2 pressures reveal that Rh significantly accelerates the reduction of these Cu2O thin films by hydrogen. Remarkably, the fastest reduction rate is observed for the fully oxidized sample with all Rh sites covered by Cu2O. Both TPD and AP-XPS data demonstrate that these covered Rh sites are inaccessible to CO, indicating that Rh under Cu2O is active for H2 dissociation but cannot be poisoned by CO. In contrast, an incomplete oxide film leaves some of the Rh sites exposed and accessible to CO, and hence prone to CO poisoning. Density functional theory calculations demonstrate that unlike many reactions in which hydrogen activation is rate limiting, the rate-determining step in the dissociation of H2 on thin-film Cu2O with Rh underneath is the adsorption of H2 on the buried Rh site, and once adsorbed, the dissociation of H2 is barrierless. These calculations also explain why H2 can only be activated at higher pressures. Together, these results highlight how different the reactivity of atomically dispersed Rh in Cu can be depending on its accessibility through the oxide layer, providing a way to engineer Rh sites that are active for hydrogen activation but resilient to CO poisoning. 
    more » « less
  3. Abstract Propylene epoxidation in the presence of oxygen and hydrogen were measured for a series of Au/TS‐1 catalysts prepared by a modified incipient wetness impregnation (mIWI) method. This method enables precise control of the Au : Ti ratio in the Au/TS‐1 catalysts. The optimized Au/TS‐1 catalyst exhibited 12 % propylene conversion, 87 % PO selectivity, and 25 % hydrogen efficiency. The particle size of gold nanoparticles prepared by the modified IWI was between 2 and 3 nm, as demonstrated by XRD patterns, STEM images, and X‐ray absorption spectroscopy at the Au L3edge. XPS spectra showed that the surface species on the catalysts were similar. UV‐Vis spectra suggested that in the modified IWI method, the chlorine ligands in Au(Cl)4were replaced by hydroxyl groups, which contributes to form small gold nanoparticles. Kinetic studies showed that the active sites of Au(mIWI)/TS‐1 are similar to the Au(DP)/TS‐1 prepared by deposition precipitation. 
    more » « less
  4. Small nanoparticles of ceria deposited on a powder of CuO display a very high selectivity for the production of methanol via CO2 hydrogenation. CeO2/CuO catalysts with ceria loadings of 5%, 20%, and 50% were investigated. Among these, the system with 5% CeOx showed the best catalytic performance at temperatures between 200 and 350 °C. The evolution of this system under reaction conditions was studied using a combination of environmental transmission electron microscopy (E-TEM), in situ X-ray absorption spectroscopy (XAS), and time-resolved X-ray diffraction (TR-XRD). For 5% CeOx/Cu, the in situ studies pointed to a full conversion of CuO into metallic copper, with a complete transformation of Ce4+ into Ce3+. Images from E-TEM showed drastic changes in the morphology of the catalyst when it was exposed to H2, CO2, and CO2/H2 mixtures. Under a CO2/H2 feed, there was a redispersion of the ceria particles that was detected by E-TEM and in situ TR-XRD. These morphological changes were made possible by the inverse oxide/metal configuration and facilitate the binding and selective conversion of CO2 to methanol. 
    more » « less
  5. Abstract Selective conversion of methane (CH 4 ) into value-added chemicals represents a grand challenge for the efficient utilization of rising hydrocarbon sources. We report here dimeric copper centers supported on graphitic carbon nitride (denoted as Cu 2 @C 3 N 4 ) as advanced catalysts for CH 4 partial oxidation. The copper-dimer catalysts demonstrate high selectivity for partial oxidation of methane under both thermo- and photocatalytic reaction conditions, with hydrogen peroxide (H 2 O 2 ) and oxygen (O 2 ) being used as the oxidizer, respectively. In particular, the photocatalytic oxidation of CH 4 with O 2 achieves >10% conversion, and >98% selectivity toward methyl oxygenates and a mass-specific activity of 1399.3 mmol g Cu −1 h −1 . Mechanistic studies reveal that the high reactivity of Cu 2 @C 3 N 4 can be ascribed to symphonic mechanisms among the bridging oxygen, the two copper sites and the semiconducting C 3 N 4 substrate, which do not only facilitate the heterolytic scission of C-H bond, but also promotes H 2 O 2 and O 2 activation in thermo- and photocatalysis, respectively. 
    more » « less